— Note!

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page xv.

First Edition (June 1994)

This edition applies to the licensed program IBM* ILE* RPG/400* (Program 5763-RG1), Version 3 Release 0 Modifica-
tion 5, and to all subsequent releases and modifications until otherwise indicated in new editions. Make sure you are
using the proper edition for the level of the product.

Order publications through your IBM representative or the IBM branch serving your locality. Publications are not
stocked at the address given below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, you can
address your comments to:

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR

1150 Eglinton Avenue East

North York, Ontario, Canada M3C 1H7

You can also send your comments by facsimile (attention: RCF Coordinator), or you can send your comments elec-
tronically to IBM. See "Communicating Your Comments to IBM" for a description of the methods. This page imme-
diately precedes the Readers' Comment Form at the back of this publication.

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation

© Copyright International Business Machines Corporation 1994. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

IBM is a registered trademark of International Business Machines Corporation, Armonk, N.Y.

Contents

Notices XV
Programming Interface XV
Trademarks and Service Marks XVi
About This Manual XVii
Who Should Use This Manual XVii
Chapter 1. Introduction to RPG/400 1
Directives 2
ITITLE (Positions 7-12) e 2
[EJECT (Positions 7-12) 3
[SPACE (Positions 7-12) 3
/COPY (Positions 7-11) 3
How the Compiler Recognizes a Compiler /COPY 4
Conditions on the Members That Are Copied 4
Results of the /COPY during Compile 5
Sequence Numbering of the Listing after a Compile 5
Common Entries 5
Symbolic Names 6
Array Names 6
Data Structure Names 7
EXCPT Names 7
Field Names 7
File Names 7
KLIST Names 7
Labels 7
Named Constants 7
PLIST Names 7
Record Names 7
Subfield Names 8
Subroutine Names 8
Table Names 8
Constants 8
Chapter 2. RPG/400 Program Cycle and Error Handling 11
General RPG/400 Program Cycle 11
Detailed RPG/400 Program Cycle 13
Detailed RPG/400 Object Program Cycle 16
Initialization Subroutine 19
Match Fields Routine 21
Overflow Routine 21
Lookahead Routine 22
Ending a Program without a Primary File, 22
Program Control of File Processing 22
RPG/400 Exception/Error Handling Routine 24

File Exception/Errors 25
File Information Data Structure 25
File Dependent Feedback Information 34
Contents of File-Information Data Structure after POST 34

File Exception/Error Subroutine (INFSR) 37

© Copyright IBM Corp. 1994 ili

Status Codes 39

File Status Codes 39
Program Exception/Errors 41
Program Status Data Structure 42
Program Status Codes 44
Program Exception/Error Subroutine L 45
Chapter 3. RPG/400 Indicators 47
Indicators Defined on RPG/400 Specifications a7
Overflow Indicators a7
Record Identifying Indicators 48
Rules for Assigning Record Identifying Indicators 48
Control Level Indicators (L1-L9) 50
Rules for Control Level Indicators 50
Split Control Field 55
Field Indicators 57
Rules for Assigning Field Indicators 57
Resulting Indicators 58
Rules for Assigning Resulting Indicators 58
Indicators Not Defined on the RPG/400 Specifications 59
External Indicators 60
Internal Indicators 60
First Page Indicator (1P) 60
Last Record Indicator (LR) 60
Matching Record Indicator (MR) 61
Return Indicator (RT) 61
Using Indicators 62
File Conditioning 62
Rules for File Conditioning L. 62

Field Record Relation Indicators 63

Assigning Field Record Relation Indicators 63

Function Key Indicators 65

Halt Indicators (H1-H9) 66

Indicators Conditioning Calculations 66

Positions 7and 8 66

Positions 9-17 66

Indicators Conditioning Output 71
Indicators Referredto AsData, 75

MIN 75

MINXX 75

Additional Rules 75
Summary of Indicators 77
Chapter 4. Control Specifications 79
Control Specification Summary Chart 79
Control Specification Statement 81

Position 6 (Form Type) 81

Positions 7-14 (Reserved) 81

Position 15 (Debug) 81

Positions 16-17 (Reserved) 82

Position 18 (Currency Symbol) 82

Position 19 (Date Format) 82

Position 20 (Date Edit) 82

Position 21 (Decimal Notation) 82

iV RPG/400 Reference

Positions 22-25 (Reserved) L 83

Position 26 (Alternate Collating Sequence) 83
Positions 27-39 (Reserved) 83
Position 40 (Sign Handling) 83
Position 41 (Forms Alignment) 84
Position 42 (Reserved) L 84
Position 43 (File Translation) 84
Positions 44-56 (Reserved) 84
Position 57 (Transparency Check) 84
Positions 58-74 (Reserved) 85
Positions 75-80 (Program Identification) 85
Chapter 5. File Description Specifications 87
Main File Description Line Summary Chart 88
File Description Specification Statement 91
Position 6 (Form Type) 91
Positions 7-14 (File Name) 91
Program Described File o 91
Externally Described File 92
Position 15 (File Type) 92
Input Files 92
Output Files 92
Update Files 92
Combined Files 92
Position 16 (File Designation) 93
Primary File 93
Secondary File 93
Record Address File 93
Array or Table File 93
Full Procedural File 94
Position 17 (End of File) 94
Position 18 (Sequence) e 94
Position 19 (File Format) 95
Positions 20-23 (Reserved) 95
Positions 24-27 (Record Length) 95
Position 28 (Limits Processing) 96
Positions 29-30 (Length of Key or Record Address) 96
Position 31 (Record Address Type) 97
Blank = Non-keyed Processing 97

A = Character Keys 97
P=Packed Keys 97
K=Key . . 98
Position 32 (File Organization) 98
Indexed Files 98
Nonkeyed Program-Described File 98
Record Address File 98
Positions 33-34 (Overflow Indicator) 99
Positions 35-38 (Key Field Starting Location) 99
Position 39 (Extension Code) 99
Positions 40-46 (Device) 99
Positions 47-52 (Reserved) 100
Position 53 (Continuation Lines) 100
Positions 54-59 (Routine) 100
Positions 60-65 (Reserved) 100

Contents V

Position 66 (File Addition) 100

Positions 67-70 (Reserved) 101
Positions 71-72 (File Condition) 101
Positions 73-74 (Reserved) 102
Positions 75-80 (Comments) 102
File Types and Processing Methods 102
Random-by-Key Processing 103
Continuation Line 110
Continuation Line Summary Chart 110
Continuation Line Options Summary Chart 111
PRTCTL Data Structure 114
Chapter 6. Extension Specifications 117
Extension Specification Summary Chart 117
Extension Specification Statement 119
Position 6 (Form Type) 119
Positions 7-10 (Reserved) L 119
Positions 11-18 (From File Name) 119
Positions 19-26 (To File Name) 120
Positions 27-32 (Array or Table Name) 121
Positions 33-35 (Entries per Record) 121
Positions 36-39 (Entries per Array or Table) 122
Positions 40-42 (Length of Entry) 122
Position 43 (Data Format) 122
Position 44 (Decimal Positions) L. 122
Position 45 (Sequence) 123
Positions 46-57 (Second Array Description) 123
Positions 58-74 (Comments) 124
Positions 75-80 (Comments) 124
Chapter 7. Line Counter Specifications 125
Line Counter Specification Summary Chart 125
Line Counter Specification Statement 126
Position 6 (Form Type) 126
Positions 7-14 (File Name) 126
Positions 15-17 (Lines PerPage) 126
Positions 18-19 (Form Length) L. 126
Positions 20-22 (Overflow Line Number) 126
Positions 23-24 (Overflow Line) 126
Positions 25-74 (Reserved) 127
Positions 75-80 (Comments) 127
Chapter 8. Input Specifications 129
Input Specifications Summary Charts 130
Program Described Files, Record Identification Entries 130
Program Described Files, Field Description Entries 132
Externally Described Files, Record Identification Entries 133
Externally Described Files, Field Description Entries 134
Data Structure Statement Specifications 135
Data Structure Subfield Specifications 137
Named Constant 138
Named Constant Continuation 138
Program Described Files 138
Position 6 (Form Type) 138

Vi RPG/400 Reference

Record ldentification Entries 138

Positions 7-14 (File Name) 139
Positions 14-16 (Logical Relationship) 139
Positions 15-16 (Sequence) 139
Alphabetic Entries 139
Numeric Entries 139
Position 17 (Number) 140
Position 18 (Option) 140
Positions 19-20 (Record Identifying Indicator, or **) 140
Indicators 141
Lookahead Fields 141
Positions 21-41 (Record Identification Codes) 142
Positions 21-24, 28-31, and 35-38 (Position) 142
Positions 25, 32, and 39 (Not) 142
Positions 26, 33, and 40 (Code Part) 143
Positions 27, 34, and 41 (Character) 143
AND Relationship 144

OR Relationship 144
Position 42 (Reserved) 144
Field Description Entries 144
Position 43 (Data Format) 144
Positions 44-51 (Field Location) 145
Position 52 (Decimal Positions) 145
Positions 53-58 (Field Name) 145
Positions 59-60 (Control Level) 146
Positions 61-62 (Matching Fields) 146
Positions 63-64 (Field Record Relation) 147
Positions 65-70 (Field Indicators) 147
Positions 71-74 (Reserved)o 148
Positions 75-80 (Comments) 148
Externally Described Files 148
Position 6 (Form Type) 148
Record Identification Entries 148
Positions 7-14 (Record Name) 148
Positions 15-18 (Reserved) 149
Positions 19-20 (Record Identifying Indicator) 149
Positions 21-41 (Record Identification Code) 149
Positions 42-74 (Reserved) 149
Positions 75-80 (Comments) 149
Field Description Entries 149
Positions 7-20 (Reserved) 149
Positions 21-30 (External Field Name) 149
Positions 31-52 (Reserved) 149
Positions 53-58 (Field Name) 150
Positions 59-60 (Control Level) 150
Positions 61-62 (Matching Fields) 150
Positions 63-64 (Reserved) 150
Positions 65-70 (Field Indicators) 150
Positions 71-74 (Reserved) 150
Positions 75-80 (Comments) 151
Data Structure Specifications 151
Data Structure Specification Entries 151
Position 6 (Form Type) 151
Positions 7-12 (Data Structure Name) 151

Contents Vil

Positions 13-16 (Reserved) 151

Position 17 (External Description) 151
Position 18 (Option) 152
Positions 19-20 (Record Identifying Indicator) 152
Positions 21-30 (External File Name) 152
Positions 31-43 (Reserved) 152
Positions 44-47 (Data Structure Occurrences) 152
Positions 48-51 (Length) 152
Positions 52-74 (Reserved)o 153
Positions 75-80 (Comments) 153
Data Structure Subfield Specifications 153
Position 7 (Reserved) 153
Position 8 (Initialization Option) 153
Positions 9-20 (Reserved) 153
Positions 21-30 (External Field Name) 153
Positions 21-42 (Initialization Value) 153
Positions 31-42 (Reserved) 153
Position 43 (Internal Data Format) 154
Positions 44-51 (Field Location) 154
Position 52 (Decimal Positions) 154
Positions 53-58 (Field Name) 154
Positions 59-74 (Reserved) 154
Positions 75-80 (Comments) 154
Named Constant Specifications 155
Positions 7-20 (Reserved) 155
Positions 21-42 (Constant) 155
Position 43 (Data Type) 155
Positions 44-52 (Reserved) 155
Positions 53-58 (Constant Name) 155
Positions 59-74 (Reserved) 155
Named Constant Continuation Specifications 155
Positions 7-20 (Reserved) 155
Positions 21-42 (Constant) 155
Positions 43-74 (Reserved) 155
Chapter 9. Calculation Specifications 157
Calculation Specification Summary Chart 157
Calculation Specification Statement 160
Position 6 (Form Type) 160
Positions 7-8 (Control Level) 160
Control Level Indicators 160

Last Record Indicator 160
Subroutine Identifier 0 161
AND/OR Lines Identifier 161
Positions 9-17 (Indicators) 161
Positions 18-27 (Factor 1) 162
Positions 28-32 (Operation) 162
Positions 33-42 (Factor 2) 162
Positions 43-48 (Result Field) 162
Positions 49-51 (Field Length) 162
Position 52 (Decimal Positions) 163
Position 53 (Operation Extender) 163
Positions 54-59 (Resulting Indicators) 164
Positions 60-74 (Comments) 164

Viii RPG/400 Reference

Positions 75-80 (Comments) 164

Chapter 10. Output Specifications 165
Output Specifications Summary Charts 165
Program Described Files, Record Identification and Control Entries (Record
Line) . . . 165
Program Described Files, Field Description and Control Entries (Field Line) 167
Externally Described Files, Record Identification and Control Entries . . . 169
Externally Described Files, Field Description and Control Entries 170
Program Described Files 170
Position 6 (Form Type) 170
Record Identification and Control Entries 170
Positions 7-14 (File Name) 171
Positions 14-16 (Logical Relationship) 171
Position 15 (Type) 171
Positions 16-18 (Record Addition/Deletion) 172
Position 16 (Fetch Overflow/Release) 172
Fetch Overflow 172
Release 173
Positions 17-22 (Space and SKip) 173
Position 17 (Space Before) 173
Position 18 (Space After) 173
Positions 19-20 (Skip Before) 174
Positions 21-22 (Skip After) 174
Positions 23-31 (Output Indicators) 174
Positions 32-37 (EXCPT Name) 175
Field Description and Control Entries 176
Positions 23-31 (Output Indicators) 176
Positions 32-37 (Field Name) L. 176
Field Names, Blanks, Tables and Arrays 176
PAGE, PAGE1-PAGE7 177
*PLACE . . . e 177
User Date Reserved Words 177
*IN, *INXX, *INXX . .o 177
Position 38 (Edit Codes) 178
Position 39 (Blank After) 178
Positions 40-43 (End Position) 178
Position 44 (Data Format) 179
Positions 45-70 (Constant or EditWord) 180
Constants 180
Edit Words 180
Format Name 180
Positions 71-74 (Reserved) 180
Positions 75-80 (Comments) 180
Externally Described Fileso 180
Position 6 (Form Type) 180
Record Identification and Control Entries 181
Positions 7-14 (Record Name) 181
Positions 14-16 (Logical Relationship) 181
Position 15 (Type) 181
Position 16 (Release) 181
Positions 16-18 (Record Addition) 181
Positions 16-22 (Fetch Overflow/Space/Skip) 181
Positions 23-31 (Output Indicators) 182

Contents X

X

RPG/400 Reference

Positions 32-37 (EXCPT Name) 182

Field Description and Control Entries 182
Positions 23-31 (Output Indicators) 182
Positions 32-37 (Field Name) 182
Position 38 (Edit Codes) 182
Position 39 (Blank After) 183
Positions 40-43 (End Position) 183
Position 44 (Data Format) 183
Positions 45-70 (Constant or EditWord) 183
Positions 71-74 (Reserved) 183
Positions 75-80 (Comments) 183

Chapter 11. Operation Codes 185

Arithmetic Operations 189

Array Operations 191

Bit Operations 192

Branching Operations 192

Call Operations 193

Compare Operations 193

Data-Area Operations 194

Declarative Operations 195

File Operations 196

Indicator-Setting Operations 197

Information Operations 197

Initialization Operations 198

Message Operation 198

Move Operations 198

Move Zone Operations 199

String Operations L 200

Structured Programming Operations 201

Subroutine Operations 203

Test Operations 204

Operation Codes List 204
ACQ (Acquire) e 205
ADD (Add) 206
ANDxx (And) 207
BEGSR (Beginning of Subroutine) 208
BITOF (Set Bits Off) 209
BITON (SetBits On) 210
CABxx (Compare and Branch) 212
CALL (Call a Program) 214
CASxx (Conditionally Invoke Subroutine) 218
CAT (Concatenate Two Character Strings) 220
CHAIN (Random Retrieval fromaFile) 224
CHECK (Check Characters) 227
CHEKR (Check Reverse) 229
CLEAR (Clear) 231
CLOSE (Close Files) 234
COMIT (Commit) 235
COMP (Compare) 236
DEBUG (Debug Function) 237

Records Written for DEBUG 237
DEFN (Field Definition) 239
*LIKE DEFN 239

*NAMVAR DEFN 239

DELET (Delete Record) 243
DIV (Divide) 244
DO (DO) . . . 245
DOUxx (Do Until)y 248
DOWxx (Do While) 251
DSPLY (Display Function) 253
DUMP (Program Dump) 256
ELSE (Else) 257
ENDyy (End a Group) 258
ENDSR (End of Subroutine) 259
EXCPT (Calculation Time Qutput) 260
EXFMT (Write/Then Read Format) 262
EXSR (Invoke Subroutine) 263
Coding Subroutines 264
FEOD (Force End of Data) 267
FORCE (Force a Certain File to Be Read NextCycle) 268
FREE (Deactivate a Program) 269
GOTO (GO TO) . . . 271
IFXx () . 273
IN (Retrieve a Data Area) 276
ITER (Iterate) 278
KFLD (Define Parts ofaKey) 281
KLIST (Define a Composite Key) 282
LEAVE (Leave a Do Group) 284
LOKUP (Look Up) 286
MHHZO (Move High to High Zone) 288
MHLZO (Move High to Low Zone) 289
MLHZO (Move Low to High Zone) 290
MLLZO (Move Low to Low Zone) 291
MOVE (Move) e 292
MOVEA (Move Array) e 295

Character MOVEA Operations 295

Numeric MOVEA Operations 295

General MOVEA Operations 296
MOVEL (Move Left) 302
MULT (Multiply) 306
MVR (Move Remainder) 307
NEXT (Next) 308
OCUR (Set/Get Occurrence of a Data Structure) 309
OPEN (Open File for Processing) 313
ORXX (OF) . . o 315
OTHER (Otherwise Select) 316
OUT (WriteaData Area) 317
PARM (Identify Parameters) 318
PLIST (Identify a Parameter List) 320
POST (Post) e 322
READ (Read a Record) 323
READC (Read Next Changed Record) 325
READE (Read Equal Key) 326
READP (Read Prior Record) 329
REDPE (Read Prior Equal) 331
REL (Release) 334
RESET (Reset) 335

Contents Xi

RETRN (Returnto Caller) 338

ROLBK (Roll Back) 339
SCAN (Scan Character String) 340
SELEC (Begin a Select Group) 342
SETGT (Set Greater Than) 344
SETLL (Set Lower Limit) 348
SETOF (Set Off) 351
SETON (SetOn) 352
SHTDN (Shut Down) 353
SORTA (Sort an Array) 354
SQRT (Square Root) 355
SUB (Subtract) 356
SUBST (Substring) 357
TAG (Tag) . . . o o 360
TESTB (TestBit) 361
TESTN (Test Numeric) 363
TESTZ (Test Zone) 365
TIME (Time of Day) 366
UNLCK (Unlock a Data Area or Release a Record) 368
UPDAT (Modify Existing Record), 369
WHxx (When True Then Select) 371
WRITE (Create New Records) 374
XFOOT (Summing the Elements of an Array) 375
XLATE (Translate) 376
Z-ADD (Zeroand Add) 378
Z-SUB (Zero and Subtract) 379
Chapter 12. RPG/400 Words with Special Functions 381
User Date Special Words 382
Rules forUserDate 382
PAGE, PAGEL-PAGE7 383
Rules for PAGE, PAGE1-PAGE7 383
Figurative Constants 384
Rules for Figurative Constants 385
Chapter 13. Using Arrays and Tables 387
AIrays . . e 387
Array Name and Index 387
The Essential Array Specifications 388
Coding a Run-Time Array 388
Loading a Run-Time Array 388
Array Information in One Record 389
Array Information in More Than One Record 389
Sequencing Run-Time Arrays 390
Coding a Compile-Time Array 390
Loading a Compile-Time Array 390
Rules for Array Input Records 390
Coding a Prerun-Time Array 392
Loading a Prerun-Time Array 393
Data Structure Initialization with Arrays 393
Run-Time Arrays e 393
Compile-Time and Prerun-Time Arrays 393
Defining More than one Array 393
Two Run-Time Arrays 393

Xii RPG/400 Reference

Mixing Compile-Time and Prerun-Time Arrays 394

Arrays in Alternating Format 394
Searching Arrays 395
Searching an Array without an Index 395
Searching an Array with anIndex 397
Specifying Arrays 398
Specifying an Array in Calculations 398
Modifying Contents of Arrays 398
Adding Entries to Arrays 399
Array Output 400
Editing Entire Arrays 400
Tables 400
LOKUP with One Table 401
LOKUP with Two Tables 401
Specifying the Table Element Found in a LOKUP Operation 402
Chapter 14. Editing Numeric Fields 403
Edit Codes 403
Simple Edit Codes 403
Combination Edit Codes 404
User-Defined Edit Codes 406
Editing Considerations 406
Summary of Edit Codes 406
Edit Words 409
How to Code an Edit Word 410
Parts of an EditWord 410
Forming the Body of an Edit Word 411
Forming the Status of an EditWord 414
Formatting the Expansion of an Edit Word 415
Summary of Coding Rules for Edit Words 415
Formatting Edit Words 416
Editing Externally Described Files 416
Chapter 15. General File Considerations 419
Primary/Secondary Multi-file Processing 419
Multi-file Processing with No Match Fields 419
Multi-file Processing with Match Fields 419
Assigning Match Field Values (M1-M9) 420
Processing Matching Records 424
Alternate Collating Sequence 427
Changing the Collating Sequence 428
Specifying an Alternate Collating Sequence 428
Formatting the Alternate Collating Sequence Records 428
File Translation 429
Specifying File Translation 429
Translating One File or All Files 430
Translating More Than One File 430
Specifying the Files 430
Specifying the Tableo 431
Special File 431
Chapter 16. Using Double-Byte Character Set (DBCS) Data in RPG/400
Programs 435
Where You Can Use DBCS Data in RPG/400 Programs 435

Contents Xiii

Xiv

RPG/400 Reference

How to Work with DBCS Literals in RPG/400 Programs 435

Transparent Literals and Constants 435
Additional Considerations for Using DBCS Data 436
Example of Coding DBCS Data in an RPG/400 Program 436
Appendix A. RPG/400 Restrictions 439
Appendix B. EBCDIC Collating Sequence 441
EBCDIC Collating Sequence 441
Bibliography 445
Index 447

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM's intellec-
tual property rights may be used instead of the IBM product, program, or service.
Evaluation and verification of operation in conjunction with other products, except
those expressly designated by IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 208 Harbor Drive, Stamford, Connecticut, USA
06904-2501.

Changes or additions to the text are indicated by a vertical line (]) to the left of the
change or addition.

This publication contains examples of data and reports used in daily business oper-
ations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Programming Interface

© Copyright IBM Corp. 1994

This RPG/400 Reference is intended to help you create RPG programs. It contains
reference information for the RPG/400 compiler. This RPG/400 Reference primarily
documents general-use programming interfaces and associated guidance informa-
tion provided by the RPG/400 compiler.

General-use programming interfaces allow the customer to write programs that
request or receive the services of the RPG/400 compiler.

However, this information unit also documents product-sensitive programming inter-
faces and associated guidance information.

XV

Product-sensitive programming interfaces are provided to allow the customer instal-
lation to perform tasks such as tailoring, monitoring, modification, tuning, or diag-
nosis of this IBM product. Use of such interfaces create dependencies on the
detailed design or implementation of the IBM product. Product-sensitive interfaces
should be used only for these specialized purposes. Because of their dependen-
cies on detailed design and implementation, it is to be expected that programs
written to such interfaces may need to be changed in order to run with new product
releases or versions, or as a result of service.

Product-sensitive programming interfaces and associated guidance information is
explicitly identified where it occurs, either by an introductory statement to a chapter
or section that is entirely product-sensitive programming interface and associated
guidance information, or by the following marking:

| Product-Sensitive Programming Interface |

Description of product-sensitive programming interface and associated information...

| End of Product-Sensitive Programming Interface |

This manual contains small programs which are furnished by IBM as simple exam-
ples to provide an illustration. These examples have not been thoroughly tested
under all conditions. IBM, therefore, cannot guarantee or imply reliability, servicea-
bility, or function of these programs. All programs contained herein are provided to
you 'AS IS'. THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED.

Trademarks and Service Marks

The following terms, denoted by an asterisk (*), used in this publication, are trade-
marks of the IBM Corporation in the United States or other countries:

Application System/400 AS/400

400 ILE

IBM 0S/2

Operating System/2 0S/400

RPG/400 Operating System/400

SAA Systems Application Architecture
SQL/400

XVi RPG/400 Reference

About This Manual

This manual is a reference for the RPG/400* compiler, the Systems Application
Architecture* (SAA*) implementation of the RPG/400 programming language on the
Application System/400* (AS/400*) system.

The topics this manual covers include:

* RPG/400 specifications

e RPG/400 indicators

e RPG/400 cycle

e QOperation codes

e RPG/400 words with special functions

e Arrays and tables

e Editing numeric fields

e General file considerations

e Double Byte Character Set (DBCS) support.

You may need to refer to other IBM* manuals for more specific information about a
particular topic. The Publications Guide, GC41-9678, provides information on all
the manuals in the AS/400* library.

For a list of related publications, see the “Bibliography” on page 445.

Who Should Use This Manual

© Copyright IBM Corp. 1994

This manual is intended for readers who, having read the RPG/400 User’s Guide,
SC09-1816 are interested in more specific and more detailed explanations of
RPG/400 code. Some references are made to the System/38 system and its
various products and features. In some instances, special reference is made to
specific publications, but if no such reference is given, the reader should use the
RPG/400 User’s Guide.

Before you use this manual, you should be familiar with certain information:

* You should know how to use data management support, which allows an appli-
cation to work with files. This information is contained in Data Management
Guide, SC41-9658

The manual includes information on:

— Fundamental structure and concepts of data management support on the
system

— Data management support for display stations, printers, tapes, and
diskettes, as well as spooling support

— Overrides and file redirection (temporarily making changes to files when an
application is run)

— Copying files by using system commands to copy data from one place to
another

— Tailoring a system using double-byte data.

XVii

e You should be familiar with your display station (also known as a workstation),
and its controls. There are also some elements of its display and certain keys
on the keyboard that are standard regardless of which software system is cur-
rently running at the display station, or which hardware system the display
station is hooked up to. Some of these keys are:

Cursor movement keys
Command keys

Field exit keys

Insert and delete keys
The Error Reset key.

This information is contained in New User’s Guide, SC41-8211.

— You should know how to operate your display station when it is hooked up
to the IBM AS/400 system and running AS/400 software. This means
knowing about the operating system and the Control Language (CL) to do
such things as:

- Sign on and sign off the display station

- Interact with displays

- Use Help

- Enter control commands and procedure commands
- Call utilities

- Respond to messages.

To find out more about control language, refer to:

— Programming: Control Language Reference, SC41-0030
— Programming: Control Language Programmer’s Guide, SC41-8077

¢ You should know how to call and use certain utilities available on the AS/400
System:

— The Screen Design Aid (SDA) utility used to design and code displays.
This information is contained in Application Development Tools: Screen
Design Aid User’'s Guide and Reference, SC09-1340.

— The Source Entry Utility (SEU), which is a full-screen editor you can use to
enter and update your source and procedure members. This information is
contained in Application Development Tools: Source Entry Utility User’s
Guide and Reference, SC09-1338.

e You should know how to interpret displayed and printed messages. This infor-
mation is contained in RPG/400 User’s Guide.

e You should be familiar with the RPG/400 program cycle and how indicators
affect the program cycle. See chapters 2 and 3 for more information.

XVviii RPG/400 Reference

Chapter 1. Introduction to RPG/400

This document describes the RPG/400 programming language.

The valid character set for the RPG/400 language consists of:

e Theletters ABCDEFGHIJKLMNOPQRSTUVWXYZ
e The numbers0123456789

e The characters + - *, .'& I/ $#: @

¢ The blank character

RPG/400 code is written on a variety of specifications. Each specification has a

specific set of functions. See “Common Entries” on page 5 for details on specifica-

tion types.

The following illustration describes the specifications.

— Note

The RPG/400 source program must be entered into the system in the order
shown. Extension and Line Counter specifications are the only exceptions to
this rule. The order can be E L or L E, but the specifications must be placed
between the File Description and Input specifications. Any of the specification
types can be absent, but at least one must be present.

- Compile-Time Array and Table Data

"kx g

I
|@ Output

I
1
I
1
|© Calculation [.)
o File Translation records
|o Input
lG Line Counter
|@ Extension
|G File Description

m Control

Alternate Collating Sequence Records

Figure 1. Order of the Types of Specifications in an RPG/400 Source Program

[l Control (header) specifications provide information about program generation

and running of the compiled program. Refer to Chapter 4, “Control
Specifications” for a description of the entries on this specification.

© Copyright IBM Corp. 1994

File description specifications define all files in the program. Refer to
Chapter 5, “File Description Specifications” for a description of the entries on
this specification.

@ Extension specifications describe all arrays and tables and indicate how they
are initialized. Refer to Chapter 6, “Extension Specifications” for a
description of the entries on this specification.

Line counter specifications indicate the length of the overflow lines and the
forms length to be printed on each page for each printer file in the program.
Refer to Chapter 7, “Line Counter Specifications” for a description of the
entries on this specification.

E Input specifications describe data structures, named constants, records, and
fields in the input files and indicate how the records and fields are used by
the program. Refer to Chapter 8, “Input Specifications” for a description of
the entries on this specification.

Calculation specifications describe calculations to be done by the program
and indicate the order in which they are done. Calculation specifications can
control certain input and output operations. Refer to Chapter 9, “Calculation
Specifications” for a description of the entries on this specification.

[] Output specifications describe the records and fields and indicate when they
are to be written by the program. Refer to Chapter 10, “Output
Specifications” for a description of the entries on this specification.

The RPG/400 language is a position-dependent language. Each entry must start in
a specific column. To represent this, each illustration of RPG/400 code will be in
listing format with a scale drawn across the top. You may find it helpful to use your
RPG/400 Debugging Template (GX21-9129).

This reference contains a detailed description of the individual RPG/400 specifica-
tions. Each field and its possible entries are described. Chapter 11, “Operation
Codes” describes the operation codes that are coded on the Calculation specifica-
tion, which is described in Chapter 9, “Calculation Specifications.”

In addition, there is information on indicators, the logic cycle, arrays and tables, edit
codes and edit words, file translation, multifile processing, and match fields.

Directives

The compiler directive statements /TITLE, /EJECT, /SPACE, and /COPY allow you to
specify heading information for the compiler listing, to control the spacing of the
compiler listing, and to insert records from other file members during a compile.
The compiler directive statements must precede any arrays, tables, translation
records, and alternate collating sequence records (that is, ** records).

ITITLE (Positions 7-12)

2

RPG/400 Reference

Use the compiler directive /TITLE to specify heading information (such as security
classification or titles) that is to appear at the top of each page of the compiler
listing. The following entries are used for /TITLE:

Positions Entry

7-12 JTITLE
13 Blank
14-74 Title information

A program can contain more than one /TITLE statement. Each /TITLE statement
provides heading information for the compiler listing until another /TITLE statement
is encountered. A /TITLE statement must be the first RPG/400 specification
encountered to print information on the first page of the compiler listing. The
information specified by the /TITLE statement is printed in addition to compiler
heading information.

The /TITLE statement causes a skip to the next page before the title is printed. The
/TITLE statement is not printed on the compiler listing.

/EJECT (Positions 7-12)

Enter /EJECT in positions 7 through 12 to indicate that subsequent specifications
are to begin on a new page of the compiler listing. Positions 13 through 74 of the
/EJECT statement must be blank. /EJECT is not printed on the compiler listing.

ISPACE (Positions 7-12)

Use the compiler directive /SPACE to control line spacing within the compiler listing.
The following entries are used for /SPACE:

Positions Entry

7-12 /SPACE

13 Blank

14-16 A positive integer value from 1 through 112 that defines the number
of lines to space on the compiler listing. The number must be left-
adjusted.

If the number specified in positions 14 through 16 is greater than the number of
lines remaining on the current page, subsequent specifications begin on a new

page.

/SPACE is not printed on the compiler listing, but is replaced by the specified line
spacing. The line spacing caused by /SPACE is in addition to the two lines that are
skipped between specification types. If position 6 is blank, it is considered to be
equal to the preceding specification and the two lines are not skipped.

/ICOPY (Positions 7-11)

The /COPY compiler directive causes records from other files to be inserted, at the
point where the /COPY occurs, with the file being compiled. The inserted files may
contain any valid specification except /COPY.

The /COPY statement is entered in the following way:

Positions Entry

7-11 /COPY

12 Blank

13-44 Identifies the location of the member to be copied (merged). The
format is:

Tibraryname/filename,membername (RPG/400 AS/400 environment)

filename.libraryname,membername (RPG Il System/38 environment)
¢ A member name must be specified.
¢ If a file name is not specified, QRPGSRC is assumed.
¢ |If a library is not specified, the library list is searched for the file.
All occurrences of the specified source file in the library list are

Chapter 1. Introduction to RPG/400 3

4

RPG/400 Reference

searched for the member until it is located or the search is com-
plete.
e |f a library is specified, a file name must also be specified.
45-49 Blank
50-80 Comments

Figure 2 shows some examples of the /COPY directive statement.

Note: Programs compiled under the System/38 environment can use the extended
naming convention. If extended names are used, each part of the qualified name
must be enclosed in quotation marks. Programs compiled under System/38 Envi-
ronment must use the naming convention filename.libraryname.

How the Compiler Recognizes a Compiler /COPY

The treatment of a /COPY directive as a compiler copy or auto report copy depends
on which create CL command is used, either CRTRPGPGM or CRTRPTPGM. Use the
rules for RPG/400 symbolic names, to specify the library files and member.

1. The CRTRPGPGM command will treat any /COPY directive encountered in the
source code as a compiler copy and does not accept the sorting or string
replacement functions.

2. The use of CRTRPTPGM will treat any /COPY directive encountered as an auto
report copy and will process any sorting or string replacement.

The SEU syntax checker does not distinguish between the two types of copy.
C/COPY MBR1

1/COPY SRCFIL,MBR2 ﬂ

0/COPY SRCLIB/SRCFIL,MBR3

0/COPY "SRCLIB!"/"SRC>3","MBR-3" ﬂ
Figure 2. Examples of the /COPY Compiler Directive Statement

Copies from member MBR1 in source file QRPGSRC. The current library list is
used to search for file QRPGSRC.

H Copies from member MBR2 in file SRCFIL. The current library list is used to
search for file SRCFIL. Note that the comma is used to separate the file name
from the member name.

El Copies from member MBR3 in file SRCFIL in library SRCLIB.

[l Copies from member "MBR-3" in file "SRC>3" in library "SRCLIB!"

Conditions on the Members That Are Copied

If the member being copied from is not a source type file, meaning that the file was
not created with the filetype *SRC, then a message is issued. This condition does
not stop compilation and the copy function is still processed.

The members being copied can contain any valid RPG/400 specifications except
another /COPY directive.

The member being copied can contain a control specification (form type H), which
is then processed as if it were part of the source code. Therefore, the first state-
ment in the program can be a /COPY directive pointing to the member containing the
control specification. The H specification must still follow the rules governing its

use (refer to Chapter 4, “Control Specifications”) and precede any other RPG/400
specification.

Results of the /COPY during Compile

During compilation, the specified file members are merged into the program at the
point where the /COPY statement occurs. Any overrides defined that apply to the
specified file and member are ignored.

Records that are copied into the program in this way contain a “+” adjacent to the
sequence number field on the left side of the listing, between the sequence number
and the form type field.

Sequence Numbering of the Listing after a Compile

The low-order 6 digits of the 8-character sequence number in the listing reflect the

original source sequence number of the /COPY member. In this way you can corre-
late the compiler listing sequence numbers (the last 6 digits) to the source member
sequence numbers (in SEU).

The high order 2 digits of the sequence number are made up of the characters A
through Z and 0 through 9 in the following order: A, B, C, ..., Z, 1, 2, ..., 9, AQ, AA,
AB, ..., AZ Al, A2, ..., A9, BO, BA, ..., ZZ, ..., Z9, 10, ..., 99.

This structure allows for up to 1295 different increments of the high order sequence
number.

Each /COPY directive causes the high order 2 characters of the sequence number
for all the code lines brought in by this /COPY to be incremented in value.

If the copied code contains specifications for externally defined files, each externally
defined file may cause the high-order characters of the sequence number to be
incremented in value two more times: once for input specifications, and once for
output specifications.

If more than 1295 increments result from /COPY directives and/or externally defined
files, a message is issued. A message is also issued if more than 50 externally
defined files are specified. Remember that one externally defined file can take up
two increments: for input and output specifications.

The low order 6 digits of the sequence number is incremented by one for each |
specification generated for an externally defined file.

Note: The /COPY directive is treated as a comment line. Because the compiler
may have to read ahead to gather sufficient information about specifications, com-
ments, or /COPY directives, certain lines may appear on the listing out of sequence.

Common Entries
The following entries are common to all RPG specifications:

e Page (positions 1-2) and Line (positions 3-5). These are the equivalent of
source line number.
¢ Specification type (position 6). The following letter codes can be used:

Entry Specification Type
H Control
F File description

Chapter 1. Introduction to RPG/400 5

E Extension

L Line counter
| Input

C Calculation
O Output

* Program ldentification (positions 75-80). Must be blank or program name on
the Control specification.

¢ Comment Statements (* in position 7). On a comment statement or a compiler
directive, position 6 may be blank.

Symbolic Names

A symbolic name is a name that uniquely identifies a specific entity in a program.
Its purpose is to allow you to access that entity. In the RPG/400 language, symbolic
names are used for the following entities:

e Arrays (on page 6)

e Constants (on page 8)

e Data structures (on page 7)

e EXCPTs (exception output records) (on page 7)
e Fields (on page 7)

* Files (on page 7)

e KLISTs (key field lists) (on page 7)
e Labels (on page 7)

e Named constants (on page 9)

e PLISTs (parameter lists) (on page 7)
¢ Record names (on page 7)

e Subfields (on page 8)

e Subroutines (on page 8)

e Tables (on page 8).

The following rules apply to all symbolic names except for deviations noted in the
description of each symbolic name:

¢ The first character of the name must be alphabetic. This includes the charac-
ters $, #, and @.

e The remaining characters must be alphabetic or numeric and part of the
RPG/400 character set.

¢ The name must be left-adjusted in the entry on the specification form.

e Blanks can fill out the entry but must not be embedded in the name.

* A symbolic name cannot be an RPG/400 reserved word.

e A symbolic name can be 1 to 6 characters.

¢ A symbolic name must be unique.

Array Names

An array name is a symbolic name assigned to an array. The following additional
rule applies to array names:

e An array name cannot begin with the letters TAB.

6 RPG/400 Reference

Data Structure Names

EXCPT Names

Field Names

File Names

KLIST Names

Labels

A data structure name is a symbolic name assigned to a data structure. A data
structure is an area in storage and is considered to be a character field. The fol-
lowing additional rule applies to data structure names:

» A field can be defined as a data structure only once.

An EXCPT name is a symbolic name assigned to an exception output record. The
following additional rule applies to EXCPT names:

e The same EXCPT name can be assigned to more than one output record.

A field name is a symbolic name assigned to a field in a program. The following
additional rules apply to field names:

* A field name can appear on more than one field definition statement if each
definition using that name has the same data type (character or numeric), the
same length, and the same number of decimal positions. All definitions using
the same name refer to a single field (that is, the same area in storage).

¢ A field can be defined in a data structure only once.

A file name is a symbolic name assigned to a file. The following additional rules
apply to file names:

¢ A file name can contain from 1 to 8 characters.

A KLIST name is a symbolic name assigned to a list of key fields.

A label is a symbolic name that identifies a specific location in a program (for
example, the destination point of a GOTO or CABxx operation).

Named Constants

PLIST Names

Record Names

A named constant is a symbolic nhame assigned to a constant.

A PLIST name is a symbolic name assigned to a list of parameters.

A record name is a symbolic name assigned to a record format in an externally
described file. The following additional rules apply to record names in an RPG/400
program:

¢ A record name can contain from 1 to 8 characters.
e A record name can exist in only one file in the program.

Chapter 1. Introduction to RPG/400

7

Subfield Names

A subfield name is a symbolic name assigned to a data structure subfield. The
following additional rules apply to subfield names:

e A subfield name cannot be specified as the result field on an *ENTRY PLIST
parameter.
* A field or an array can appear only once as a subfield name.

Subroutine Names

A subroutine name is a symbolic name assigned to a subroutine. The name is
defined in factor 1 of the BEGSR (begin subroutine) operation.

Table Names

A table name is a symbolic name assigned to a table. The following additional
rules apply to table names:

* A table name can contain from 3 to 6 characters.
e A table name must begin with the letters TAB.

Constants
Literals and named constants are types of constants. Constants can be specified
in factor 1 or factor 2 of certain operations and in the constant field of output spec-
ifications. Constants can also be used to specify initialization values for data struc-
ture subfields on the input specification. A literal is a self-defining constant that can
be referred to in a program. A literal can be character, hexadecimal or numeric.

Character Literals

The following are the rules for specifying a character literal:

e Any combination of characters can be used in a character literal. This includes
DBCS characters. Embedded blanks are valid.

» Character literals must be enclosed in apostrophes ().

* An apostrophe required as part of a literal is represented by two apostrophes.
For example, the literal 0°CLOCK is coded as “0°°CLOCK”.

e Character literals cannot be used for arithmetic operations.

Hexadecimal Literals

The following are the rules for specifying a hexadecimal literal:
» Hexadecimal literals take the form:
X'xIx2...xn'

e Where X'x1x2...xn' can only contain the characters A-F, a-f, and 0-9.

e The literal coded between the apostrophes must be of even length.

e Each pair of characters defines a single byte.

» Hexadecimal literals are allowed anywhere that character literals are supported
except as factor 2 of ENDSR and as edit words.

e Except when used in the bit operations BITON, BITOF, and TESTB, a
hexadecimal literal has the same meaning as the corresponding character
literal. For the bit operations, factor 2 may contain a hexadecimal literal repres-
enting 1 byte. The rules and meaning are the same for hexadecimal literals as
for character fields.

8 RPG/400 Reference

If the hexadecimal literal contains the hexadecimal value for a single quote, it
does not have to be specified twice, unlike character literals. For example, the
literal

A'B

is specified as

NEEL

but the hexadecimal version is X'C17DC2' not X'C17D7DC2".

Numeric Literals

The following are the rules for specifying a numeric literal:

A numeric literal consists of any combination of the digits 0 through 9. A
decimal point or a sign can be included.

The sign (+ or -), if present, must be the leftmost character. An unsigned literal
is treated as a positive number.

Blanks cannot appear in a numeric literal.

Numeric literals must not be enclosed in apostrophes ().

Numeric literals are used in the same way as a numeric field, except that
values cannot be assigned to numeric literals.

The character (comma or period) used for the decimal notation is determined
by the inverted print option specified in position 21 of the control specification.

Named Constants

A named constant is a symbolic name assigned to a character or numeric constant.
Named constants are defined on Input specifications. The value of a named con-
stant follows the rules specified for literals. See “Named Constant Specifications”
on page 155 for detailed information.

Chapter 1. Introduction to RPG/400 9

10 RPG/400 Reference

RPG Program Cycle and Error Handling

Chapter 2. RPG/400 Program Cycle and Error Handling

The RPG/400 compiler supplies part of the logic for an RPG/400 program. The logic
the compiler supplies is called the program cycle or logic cycle. The program cycle
is a series of ordered steps that the program goes through for each record read.

The information that you code on RPG/400 specifications in your source program
need not explicitly specify when records should be read or written. The RPG/400
compiler can supply the logical order for these operations when your source
program is compiled. Depending on the specifications you code, your program may
or may not use each step in the cycle.

Primary (identified by a P in position 16 of the file description specifications) and
secondary (identified by an S in position 16 of the file description specifications)
files indicate input is controlled by the program cycle. A full procedural file (identi-
fied by an F in position 16 of the file description specifications) indicates that input
is controlled by program-specified calculation operations (for example, READ and
CHAIN).

A program can consist of:

e One primary file and, optionally, one or more secondary files

e Only full procedural files

* A combination of one primary file and one or more full procedural files in which
some of the input is controlled by the cycle, and other input is controlled by the
program

* No files (for example, input can come from a parameter list or a data area data
structure).

General RPG/400 Program Cycle

Figure 3 on page 12 shows the specific steps in the general flow of the RPG/400
program cycle. A program cycle begins with step 1 and continues through step 7,
then begins again with step 1.

The first and last time a program goes through the RPG/400 cycle differ somewhat
from the normal cycle. Before the first record is read the first time through the
cycle, the program resolves any parameters passed to it, writes the records condi-
tioned by the 1P (first page) indicator, and processes any heading or detail output
operations having no conditioning indicators or all negative conditioning indicators.
For example, heading lines printed before the first record is read might consist of
constant or page heading information or fields for reserved words, such as PAGE
and UDATE. In addition, the program bypasses total calculations and total output
steps on the first cycle.

During the last time a program goes through the cycle, when no more records are

available, the LR (last record) indicator and L1 through L9 (control level) indicators
are set on. Tables and data area structures are written out, and the program ends.

© Copyright IBM Corp. 1994 11

RPG Program Cycle and Error Handling

Perform
heading
and
detail
lines

Get input
record

Perform
total
calculations

Perform
total
output

E Yes End of
program

No
Move fields
Perform
detail
calculations

Figure 3. RPG/400 Program Logic Cycle

12 RPG/400 Reference

RPG Program Cycle and Error Handling

All heading and detail lines (H or D in position 15 of the output specifica-
tions) are processed.

H The next input record is read and the record identifying and control level indi-
cators are set on.

Total calculations are processed. They are conditioned by an L1 through L9
or LR indicator, or an L0 entry.

Bl Al total output lines are processed. (identified by a T in position 15 of the
output specifications).

B tis determined if the LR indicator is on. If it is on, the program is ended.

[@ The fields of the selected input records are moved from the record to a proc-
essing area. Field indicators are set on.

All detail calculations are processed (those not conditioned by control level

indicators in positions 7 and 8 of the calculation specifications) on the data
from the record read at the beginning of the cycle.

Detailed RPG/400 Program Cycle

In “General RPG/400 Program Cycle” on page 11, the basic RPG/400 Logic Cycle
was introduced. The following figures provide a detailed explanation of the
RPG/400 Logic Cycle.

Chapter 2. RPG/400 Program Cycle and Error Handling 13

RPG Program Cycle and Error Handling

indicator

!

No

(1]

@ Set off RT indicator
@ Parameters resolved

First
time program
called

No

Move result field
to factor 1 for
*ENTRY PLIST

*INIT

Perform program initialization:

® Run program initialization

® Perform data structure and
subfield initialization

® Retrieve external indicators
(U1 through U8) and user
date fields (UDATE,UYEAR,
UMONTH,UDAY

® Open files

@ Load data area data
structures, arrays, and tables

® Move result field to factor 1
for *ENTRY PLIST

® Run initialization subroutine,
*INZSR, if specified

@ Store data structures and

variables for RESET operation

*DETL
® Perform heading and detail
output
@ Perform fetch overflow lines
@ Set off first page
indicators (1P)

*GETIN

Any
H1 through H9
indicators
on

Issue message
to requester

(5 B

Response
cancel

Cancel
with dump

Set of record identifying and
L1 through L9 indicators

No
m RT
on
14/
Primary file

Set on
L1 through L9

Move factor 2 to
result field for
*ENTRY PLIST

| Return to caller ’
No

® On first cycle, retrieve first
record from primary file and
and from each secondary
file in program

@ On other cycles, retrieve
input record from last file
processed, if required

End of file

Yes

Match fields
specified

Figure 4 (Part 1 of 2). Detailed RPG/400 Object Program Cycle

14

RPG/400 Reference

Note:

Determine record
type and sequence

Yes

Undefined
record type or sequ-
ence error,

RPG exception/error
handling routine

Initialize to process
the forced file

Match fields
routine

= RPG routine
(for detailed information
see the descriptions that

follow this picture).

m Set on LR indicator
Yes |and all control level
indicators
(L1 through L9)

Should
LR indicator
be set on

Set on record identifying
indicator for record selected

® Set on appropriate
control level indicators
(L1 through L9)

® Save control fields

Should
totals be
executed

*TOTC
Perform total calculations

S

*TOTL RETRN
Perform total output operation code

Any
H1 through H9
indicators

RPG Program Cycle and Error Handling

Overflow
indicator

Set MR indicator
on or off

m |

® Make data available
from last record read

® Set field indicators
on or off

Look-ahead Yes
fields specified

*DETC
Perform detail calculations

Yes

Overflow

! _routine__]

b |
Look-ahead
routine |

m No

| Move factor 2 to result
field on PARM

E& *TERM

® Write locked data
area structures,

LR Yes arrays, and tables
on ® Reset external
indicators
No (U1 thrugh us)
“CANCL
o Close files
® Unlock other data
areas locked by
the program
m Set return code. If
o | @abnormal termination,
"] issue escape message
X A RPG9001.
Note: — - — = RPG routine (for detailed

information, see the descriptions
that follow this figure).

Return
to caller

Figure 4 (Part 2 of 2). Detailed RPG/400 Object Program Cycle

Chapter 2. RPG/400 Program Cycle and Error Handling

15

RPG Program Cycle and Error Handling

Detailed RPG/400 Object Program Cycle

Figure 4 on page 14 shows the specific steps in the detailed flow of the RPG/400
program cycle. The item numbers in the following description refer to the numbers
in the figure. Routines are flowcharted in Figure 7 on page 24 and in Figure 5 on
page 20.

16

RPG/400 Reference

2]

co [|

The RT indicator is set off. The RPG/400 language determines whether
*ENTRY PLIST is specified. Parameters are resolved.

The first invocation of the is checked program. If it is the first invocation,
program initialization continues. If not, it moves the result field to factor 1 in
the PARMS statement in *ENTRY PLIST and branches to step 5.

The program is initialized. The RPG/400 language performs data structure
and subfield initialization; sets up the external indicators (U1 through U8) and
user date fields (UDATE, UYEAR, UMONTH, UDAY); opens the files; loads all data
area data structures, arrays, and tables; moves the result field to factor 1 in
the PARMS statement in *ENTRY PLIST; runs the initialization subroutine
*INZSR; and then stores the structures and variables for the RESET operation.

For more information see "Initialization" in chapter 9 of the RPG/400 User's
Guide.

Heading and detail lines (identified by an H or D in position 15 of the output
specifications) are written before the first record is read. Heading and detail
lines are always processed at the same time. If conditioning indicators are
specified, the proper indicator setting must be satisfied. If fetch overflow
logic is specified and the overflow indicator is on, the appropriate overflow
lines are written. File translation, if specified, is done for heading and detail
lines, and overflow output. This step is the return point in the program if
factor 2 of an ENDSR operation contains a field name or a literal with the
value *DETL.

The halt indicators (H1 through H9) are tested. If all the halt indicators are
off, the program branches to step 8. Halt indicators can be set on anytime
during the program. This step is the return point in the program if factor 2 of
an ENDSR operation contains a field name or a literal with the value *GETIN.

a. If any halt indicators are on, a message is issued to the requester. For
an interactive job, the message goes to the requester. For a batch job,
the message goes to QSYSOPR. If QSYSOPR is not in break mode, a
default response is issued.

b. If the response is to continue, the halt indicator is set off, and the
program returns to step 5. If the response is to cancel, the program
goes to step 6.

If the response is to cancel with a dump, the program goes to step 7; other-
wise, the program branches to step 37.

The program issues a dump and branches to step 37 (abnormal ending).

All record identifying, 1P (first page), and control level (L1 through L9) indica-
tors are set off. All overflow indicators (0A through 0G, 0V) are set off unless
they have been set on during preceding detail calculations or detail output.
Any other indicators that are on remain on.

It is determined whether the LR (last record) indicator is on. If it is on, the
program continues with step 10; otherwise, the program branches to step 11.

[=
B B

N I
rEOEN

-
(3}

N
w

RPG Program Cycle and Error Handling

The RPG/400 language sets the appropriate control level (L1 through L9) indi-
cators on and branches to step 29.

It is determined whether the RT indicator is on. If it is on, the program con-
tinues with step 12; otherwise, the program branches to step 14.

Factor 2 is moved to the result field for *ENTRY PLIST.
If the RT indicator is on, the called program returns to the caller.

It is determined if the program contains a primary file. If a primary file is
present in the program, the program continues with step 15; otherwise, the
program branches to step 29.

During the first program cycle, the RPG/400 language reads the first record
from the primary file and from each secondary file in the program. In other
program cycles, the RPG/400 language reads a record from the last file proc-
essed. If this file is processed by a record address (RA) file, the data in the
record address file defines the record to be retrieved. If look-ahead fields
are specified in the last record processed, the record may already be in
storage. No read may be done at this time.

It is determined if end of file has occurred on the file just read. If it has not
occurred, the program continues with step 17; otherwise, the program
branches to step 20.

If a record has been read from the file, the record type and record sequence
(positions 15 through 18 of the input specifications) are determined.

It is determined if the record type is defined in the program, or if the record
sequence is correct. If the record type is undefined or the record sequence
is incorrect, the program continues with step 19; otherwise, the program
branches to step 20.

The RPG/400 exception/error handling routine receives control. (For detailed
information on the RPG/400 exception/error handling routine, see “RPG/400
Exception/Error Handling Routine” on page 24.)

It is determined if a FORCE operation was processed on the previous cycle. If
a FORCE operation was processed, the program selects that file for proc-
essing (step 21) and branches around the processing for match fields (steps
22 and 23). The branch is processed because all records processed with a
FORCE operation are processed with the matching record (MR) indicator off.

If FORCE was issued on the previous cycle, the program selects the forced file
for processing after removing any match fields from the file just read. If the
file forced is at end of file, normal primary/secondary multi-file logic selects
the next record for processing and the program branches to step 24.

It is determined if match fields are specified. If they are, the program con-
tinues with step 23; otherwise, the program branches to step 24.

The match fields routine receives control. (For detailed information on the
match fields routine, see “Match Fields Routine” on page 21.)

The RPG/400 language sets on the LR (last record) indicator when all records
are processed from the files that have an E specified in position 17 of the file
description specifications and all matching secondary records have been
processed. If the LR indicator is not set on, processing continues with step
26.

Chapter 2. RPG/400 Program Cycle and Error Handling 17

RPG Program Cycle and Error Handling

18

RPG/400 Reference

The RPG/400 language sets on the LR (last record) indicator and all control
level (L1 through L9) indicators, and processing continues with step 29.

The RPG/400 language sets on the record identifying indicator for the record
selected for processing.

It is determined if the record selected for processing caused a control break.
A control break occurs when the value in the control fields of the record
being processed differs from the value of the control fields of the last record
processed. If a control break has not occurred, the program branches to
step 29.

When a control break occurs, the appropriate control level indicator (L1
through L9) is set on. This causes all lower level control indicators to be set
on. The program saves the contents of the control field.

It is determined if the total-time calculations and total-time output should be
done. Totals are bypassed on the first cycle if control levels are not speci-
fied in the input specifications. After the first cycle, totals are processed on
every cycle. If control levels are specified in the input specifications, totals
are bypassed until after the first record containing control fields has been
processed. Totals are always processed when the LR indicator is on.

The RPG/400 language processes all total calculations conditioned by a
control level entry (positions 7 and 8 of the calculation specifications). This
step is the return point in the program if factor 2 of an ENDSR operation con-
tains a field name or a literal with the value *TOTC.

All total output is processed. If fetch overflow logic is specified and the over-
flow indicator (0A through 0G, 0V) associated with the file is on, the overflow
lines are written. File translation, if specified, is done for all total output and
overflow lines. This step is the return point in the program if factor 2 of an
ENDSR operation contains a field name or a literal with the value *TOTL.

If LR is on, the program continues with step 33; otherwise, the program
branches to step 40.

The halt indicators (H1 through H9) are tested. If any halt indicators are on,
the program branches to step 37 (abnormal ending). If the halt indicators
are off, the program continues with step 34. If the RETRN operation code is
used in calculations, the program branches to step 33 after processing of
that operation.

The factor 2 fields are moved to the result fields on the PARMs.

If LR is on, the program continues with step 36; otherwise, the program
branches to step 38.

The RPG/400 language writes all arrays or tables for which a file name is
specified in the extension specifications (positions 19 through 26) and writes
all locked data area data structures. External indicators (U1 through U8) are
also reset. Output arrays and tables are translated, if necessary.

All open files are closed. If factor 2 of an ENDSR operation contains a field
name or a literal with the value *CANCL, the return point in the program
includes steps 37 through 39. The RPG/400 language also unlocks all data
areas that have been locked (*NAMVAR DEFN statement) but not unlocked by
the program.

RPG Program Cycle and Error Handling

The internal return code is set. Escape message RPG9001 is issued if
ending is abnormal.

Control is returned to the caller.

Note: Steps 32 through 39 constitute the normal ending routine. For an abnormal
ending, steps 34 through 36 are bypassed.

It is determined whether any overflow indicators (0OA through 0G, 0V) are on.
If an overflow indicator is on, the program continues with step 41; otherwise,
the program branches to step 42.

The overflow routine receives control. (For detailed information on the over-
flow routine, see “Overflow Routine” later in this chapter.) This step is the
return point in the program if factor 2 of an ENDSR operation contains a field
name or a literal with the value of *OFL.

EH The MR indicator is set on and remains on for the complete cycle that proc-
esses the matching record if this is a multi-file program and if the record to
be processed is a matching record. Otherwise, the MR indicator is set off.

Data from the last record read is made available for processing. All field
indicators are set on, if specified.

B tis determined whether look-ahead fields are specified. If so, the program
continues with step 45; otherwise, the program branches to step 46.

EE The look-ahead routine receives control. (For detailed information on the
look-ahead routine, see “Lookahead Routine” on page 22.)

B Detail calculations are processed. This step is the return point in the
program if factor 2 of an ENDSR operation contains a field name or a literal
with the value *DETC. The program branches to step 4.

Initialization Subroutine

Refer to Figure 4 on page 14 to see a detailed explanation of the RPG/400 initial-
ization subroutine.

A specific subroutine that is to be run at program initialization time can be defined
by specifying *INZSR in factor 1 of the subroutine's BEGSR operation. Only one sub-
routine can be defined as an initialization subroutine. It is called at the end of the
program initialization step of the program cycle (that is, after data structures and
subfields are initialized, external indicators and user data fields are retrieved, files
are opened, data area data structures, arrays, and tables are loaded, and PARM
result fields moved to factor 1 for *ENTRY PLIST). *INZSR may nhot be specified as a
file/program error/exception subroutine.

If a program ends with LR off and if the program is still active (that is, not deacti-
vated with a FREE operation), the initialization subroutine does not automatically run
during the next invocation of that program because the subroutine is part of the
initialization step of the program.

If the initialization subroutine (*INZSR) does not complete before an exit from the
program is made with LR off, the *INZSR will be rerun at the next invocation of the
program.

The initialization subroutine is like any other subroutine in the program, other than
being called at program initialization time. It may be called using the EXSR or CASxx

Chapter 2. RPG/400 Program Cycle and Error Handling 19

RPG Program Cycle and Error Handling

operations, and it may call other subroutines or other programs. Any operation that
is valid in a subroutine is valid in the initialization subroutine, with the exception of
the RESET operation. This is because the value used to reset a variable may not be
defined until after the initialization subroutine is run.

Any changes made to a variable during the initialization subroutine affect the value
that the variable is set to on a subsequent RESET operation. Default values can be
defined for fields in record formats by, for example, setting them in the initialization
subroutine and then using RESET against the record format whenever the default
values are to be used. The initialization subroutine can also retrieve information
such as the current time for 1P output.

For more information see "Initialization" in Chapter 9 of the RPG/400 User's Guide.

Match fields
routine

Multifile
processing

Determine the
file to be
processed

Match fields
sequence error

| routine !
E . Look-ahead
Overflow routine
Move the match
fields to
the match field n Line
hold area put out Retrieve next
with previous record for
fetch this file
Perform Extract the
overflow look-ahead
output fields

-

Figure 5. Detail Flow of RPG/400 Match Fields, Overflow, and Lookahead Routines

20 RPG/400 Reference

RPG Program Cycle and Error Handling

Match Fields Routine
Figure 5 on page 20 shows the specific steps in the RPG/400 match fields routine.
The item numbers in the following descriptions refer to the numbers in the figure.

It is determined whether multifile processing is being used. If multifile proc-
essing is being used, processing continues with step 2; otherwise, the
program branches to step 3.

H The value of the match fields in the hold area is tested to determine which
file is to be processed next.

El The RPG/400 program extracts the match fields from the match files and
processes sequence checking. If the match fields are in sequence, the
program branches to step 5.

B If the match fields are not in sequence, the RPG/400 exception/error handling
routine receives control.

H The match fields are moved to the hold area for that file. A hold area is
provided for each file that has match fields. The next record is selected for
processing based on the value in the match fields.

Overflow Routine
Figure 5 on page 20 shows the specific steps in the RPG/400 overflow routine.
The item numbers in the following descriptions refer to the numbers in the figure.

The RPG/400 program determines whether the overflow lines were written
previously using the fetch overflow logic (step 30 in Figure 4 on page 14). If
the overflow lines were written previously, the program branches to the spec-
ified return point; otherwise, processing continues with step 2.

B Al output lines conditioned with an overflow indicator are tested and written
to the conditioned overflow lines.

The fetch overflow routine allows you to alter the basic RPG/400 overflow logic to
prevent printing over the perforation and to let you use as much of the page as
possible. During the regular program cycle, the RPG/400 program checks only
once, immediately after total output, to see if the overflow indicator is on. When the
fetch overflow function is specified, the RPG/400 program checks overflow on each
line for which fetch overflow is specified.

Specify fetch overflow with an F in position 16 of the output specifications on any
detail, total, or exception lines for a PRINTER file. The fetch overflow routine does
not automatically cause forms to advance to the next page.

During output, the conditioning indicators on an output line are tested to determine
whether the line is to be written. If the line is to be written and an F is specified in
position 16, the RPG/400 program tests to determine whether the overflow indicator
is on. If the overflow indicator is on, the overflow routine is fetched and the fol-
lowing operations occur:

* Only the overflow lines for the file with the fetch specified are checked for
output.

e All total lines conditioned by the overflow indicator are written.

¢ Forms advance to a new page when a skip to a line number less than the line
number the printer is currently on is specified in a line conditioned by an over-
flow indicator.

» Heading, detail, and exception lines conditioned by the overflow indicator are
written.

Chapter 2. RPG/400 Program Cycle and Error Handling 21

RPG Program Cycle and Error Handling

¢ The line that fetched the overflow routine is written.

¢ Any detail and total lines left to be written for that program cycle are written.

Position 16 of each OR line must contain an F if the overflow routine is to be used
for each record in the OR relationship. Fetch overflow cannot be used if an overflow
indicator is specified in positions 23 through 31 of the same specification line. If
this occurs, the overflow routine is not fetched.

Using the fetch overflow routine when printing a particular line causes overflow and
there is not enough space left on the page to print the remaining detail, total,
exception, and heading lines conditioned by the overflow indicator. To determine
when to fetch the overflow routine, study all possible overflow situations. By
counting lines and spaces, you can calculate what happens if overflow occurs on
each detail, total, and exception line.

Lookahead Routine
Figure 5 shows the specific steps in the RPG/400 lookahead routine. The item
numbers in the following descriptions refer to the numbers in the figure.

The next record for the file being processed is read. However, if the file is a
combined or update file (identified by a C or U, respectively, in position 15 of
the file description specifications), the lookahead fields from the current
record being processed is extracted.

H The lookahead fields are extracted.

Ending a Program without a Primary File

If your program does not contain a primary file, you must specify a way for the
program to end:

* By setting the LR indicator on

e By setting the RT indicator on

e By setting an H1 through H9 indicator on

e By specifying the RETRN operation code

» By allowing an exception/error to end the program if:

— No exception/error subroutine is specified
— No return point is specified on an exception/error subroutine
— The user's response is to cancel the program.

The LR, RT, H1 through H9 indicators, the RETRN operation code, and the
exception/error routine can be used in conjunction with each other.

Program Control of File Processing

22

RPG/400 Reference

Specify a full procedural file (F in position 16 of the file description specifications) to
control all or partial input of a program. A full procedural file indicates that input is
controlled by program-specified calculation operations (for example, READ, CHAIN).
When both full procedural files and a primary file (P in position 16 of the file
description specifications) are specified in a program, some of the input is con-
trolled by the program, and other input is controlled by the cycle. The program
cycle exists when a full procedural file is specified; however, file processing occurs
at detail or total calculation time.

RPG Program Cycle and Error Handling

The file operation codes can be used for program control of input. These file oper-
ation codes are discussed in Chapter 11, “Operation Codes” on page 185.

START

g Performs heading

operations. Performs
detail output operations.
If overflow line has been
reached, sets on overflow
indicator.

@ Performs detail
calculations. Sets
resulting indicators.

Moves data from record selected at
beginning of cycle into processing area.

Sets off control level
indicators. Sets off record
identifying indicators.

Overflow indicator on? Yes, performs

i [
overflow operations. Reads a record.

End-of-file? Yes, sets on

control level and LR indicators
and skips to perform total {
calculations.

LR indicator on? Yes, end of
program has been reached.

Sets on record identifying indicators
for the record just read.

Change in control fields?
o Performs total output operations. Yes, sets on control level o
If overflow line has been reached, indicators.
sets on overflow indicator.

o)
Performs total calculations.

Sets resulting indicators. Note: The boxed steps
are bypassed when no
primary file exists;
that is, when the
programmer controls

all the input operations.

Figure 6. Programmer Control of Input Operation within the Program-Cycle

Chapter 2. RPG/400 Program Cycle and Error Handling 23

RPG Program Cycle and Error Handling

Exception/error

Process next
sequential
instruction

Resume current
operation

Status code is
1121-1126

E Issue message
to requester

n Set up file
information or
program status
data structure

Indicator
in 56 and 57 of
operation
code

Set on indicator
and process next
sequential
instruction

Cancel

with dump
present
Control passes to
INFSR or *PSSR Issue dump
subroutine
E Close files
Rp%tlugp Return to_ and irt1dica.tet g -
specified specified point PFOQYVaviTh grr':)lpa e
INFSR or Free program so it
Return to next H
;PSSR called by sequential instruction can be called again
EXSR
15}
Set return code
and issue escape Return to caller
message RPG9001.

Figure 7. Detail Flow of RPG/400 Exception/Error Handling Routine

24 RPG/400 Reference

RPG/400 Exception/Error Handling Routine
Figure 7 shows the specific steps in the RPG/400 exception/error handling routine.
The item numbers in the following description refer to the numbers in the figure.

2]

Set up the file information or program status data structure, if specified, with
status information.

If the exception/error occurred on an operation code that has an indicator
specified in positions 56 and 57, the indicator is set on, and control returns
to the next sequential instruction in the calculations.

It is determined whether the appropriate exception/error subroutine (INFSR or
*PSSR) is present in the program. If it is, the program goes to step 4; other-
wise, the program branches to step 7.

Control passes to the exception/error subroutine (INFSR or *PSSR).

co I |

==
EE

=
(3,

) ==
BEE BE

=
(<))

RPG Program Cycle and Error Handling

It is determined if a return point is specified in factor 2 of the ENDSR operation
for the exception/error subroutine. If a return point is specified, the program
goes to the specified return point. If a return point is not specified, the
program goes to step 6. If a field name is specified in factor 2 of the ENDSR
operation and the content is not one of the RPG/400-defined return points
(such as *GETIN or *DETC), the program goes to step 6. No error is indi-
cated, and the original error is handled as though the factor 2 entry were
blank.

If the exception/error subroutine was called explicitly by the EXSR operation,
the program returns to the next sequential instruction. If not, the program
continues with step 7.

If the Status code is 1121-1126 (see “Status Codes” on page 39), control
returns to the current instruction in the calculations.

A message is issued to the requester. For an interactive job, the message
goes to the requester. For a batch job, the message goes to QSYSOPR. If
QSYSOPR is not in break mode, a default response is issued.

It is determined if the user's response is to cancel the program. If the
response is to cancel, the program branches to step 11. If not, the program
continues with step 10.

The program continues processing at *GETIN.

It is determined if the user's response is to cancel with a dump. If the
response is to cancel with a dump, the program continues with step 12. If
not, the program branches to step 13.

A dump is issued.

All files are closed and the return code is set to indicate that the program
ended with an error.

The program is freed so that it can be called again.

Set return code and issue escape message RPG9001.

Return to caller.

File Exception/Errors

File Information Data Structure
A file information data structure (INFDS) can be defined for each file to make file
exception/error information available to the program. The file information data
structure must be unique for each file. A file information data structure contains
predefined subfields that identify:

The name of the file for which the exception/error occurred

The record being processed when the exception/error occurred or the record
that caused the exception/error

The last operation being processed when the exception/error occurred
The status code

The RPG/400 routine in which the exception/error occurred.

Note: The file information data structure is always provided and updated even if
INFDS is not specified in the program. If INFDS is not specified, the information in
the data structure is available for program debugging through the 0S/400* debug

facil

ities or the DUMP operation.

Chapter 2. RPG/400 Program Cycle and Error Handling 25

RPG Program Cycle and Error Handling

26

RPG/400 Reference

Overwriting the INFDS data structure may cause unexpected results in subsequent
error handling and is not recommended.

You can use the file information data structure to access the information in the data
management feedback area, which is available following each 1/O operation. See
“POST (Post)” on page 322 for information on how POST affects the updating of the
feedback area.

To specify a file information data structure, make the following entries on a contin-
uation line (or on the main file specification line) for the file description
specifications:

Position Entry

6 F

7-52 Blank (if the information is specified on a separate continuation line)
53 K (indicates a continuation statement)

54-59 INFDS (identifies this data structure as a file information data structure)
60-65 Name of the file information data structure.

Also make the following entries on an input specification line:

Position Entry

6 I

7-12 Name of the file information data structure
13-18 Blank

19-20 DS

21-74 Blank.

For each subfield of the information data structure, make the following entries on an
input specification line:

Position Entry

6 I

7-43 Blank

44-51 A special keyword (listed below) or a From and To position in the file
information data structure.

52 Blank

53-58 Name of the subfield of the information data structure

59-74 Blank.

The location of the subfields in the file information data structure is defined by
special keywords.

RPG Program Cycle and Error Handling

Specify the special keywords left-adjusted, in positions 44 through 51. The
keywords are not labels and cannot be used to access the subfields. Short entries
are padded on the right with blanks. The keywords and their descriptions are as

follows:

Keyword
*FILE

*INP
*MODE
*QUT

*QPCODE

*SIZE

*STATUS

*RECORD

*ROUTINE

Description

Eight-position character field that identifies the name of the file (as
specified in positions 7 through 14 of the file description specifica-
tions).

A two-digit numeric field containing 0. The national language input
capability of the device is for single characters.

A two-digit numeric field containing 0. The preferred national lan-
guage mode of the device is for single characters.

A two-digit numeric field containing 0. The national language output
capability of the device is for single characters.

Six-position character field that contains the name of the last opera-
tion processed on the file. The first five positions (left-adjusted)
specify the type of operation by using the character representation of
the calculation operation codes. For example, if a READE was being
processed, READE is placed in the leftmost five positions. If the opera-
tion was an implicit operation (for example, a primary file read or
update on the output specifications), the equivalent operation code is
generated (such as READ or UPDAT) and placed in location *OPCODE.
The remaining position contains one of the following:

F The last operation was specified for a file name.

R The last operation was specified for a record.

I The last operation was an implicit file operation.

A four-digit numeric field containing the product of the number of rows
and the number of columns on the device screen.

Five-digit numeric field, with zero decimal positions, that contains the
status code. For a description of these codes, see “Status Codes” on
page 39.

Program described file: Eight-position character field in which the
record identifying indicator is placed left-adjusted; the remaining six
positions are filled with blanks.

Externally described file: Eight-position character field which contains
the name of the record being processed when the exception/error
occurred.

Eight-position character field that contains the name of the routine in
which the exception/error occurred. This subfield is updated at the
beginning of an RPG/400 routine or after a program call only when the
location *STATUS is updated with a value of nonzero. The following
names identify the routines:

*INIT Program initialization

*DETL Detall lines

*GETIN Get input record

*TOTC Total calculations

*TOTL Total lines

*DETC Detail calculations

*0FL Overflow lines

*TERM Program ending

pgmname Name of program called (first 8 characters).
subrname Name of subroutine

EXCPT name Name of EXCPT

Chapter 2. RPG/400 Program Cycle and Error Handling 27

RPG Program Cycle and Error Handling

28

RPG/400 Reference

Note: The fields defined using keywords *SIZE, *INP, *QUT, and *MODE are only
valid after a POST operation to a specific device.

A file information data structure (INFDS) can be defined for each file in an RPG/400
program:

Even if a file information data structure is not specified, the information in it is avail-
able for program debugging through the 0S/400 debug facilities or the RPG/400 DUMP
operation.

Table 1 to Table 5 provide the layout of the subfields of the feedback information
available in the file information data structure. You can use the predefined From
and To positions to access the feedback information.

The input/output feedback information section (positions 241 through 366) and the
device-dependent feedback information section (positions 367 on, see Data Man-
agement Guide). of the file information data structure are not updated for each
operation to files in which the records are blocked and unblocked. The feedback
information is updated only when a block of records is transferred between RPG/400
system and the OS/400 system. For a potential run-time performance improvement
of input and output operations, the RPG/400 language unblocks input records and
blocks output records in SEQ or DISK files if:

* The file is an output-only file (0 is specified in position 15 of the file description
specifications) and contains only one record format if the file is externally
described.

e The file is a combined table file. (C is specified in position 15, and T in position
16 of the file description specifications.)

e The file is an input-only file. (I is specified in position 15 of the file description
specifications). It contains only one record format if the file is externally
described, and uses only the OPEN, CLOSE, FEOD, and READ operation codes.

Even if all of the above conditions are met, certain OS/400 system restrictions may
prevent blocking and unblocking. In these cases, performance is not improved and
the input/output feedback area is updated for each input/output operation.

You can obtain valid updated feedback information by using the CL command
OVRDBF (Override with Database File) with SEQONLY (*NO) specified. If you use a
file override command, the RPG/400 language does not block or unblock the
records in the file.

RPG Program Cycle and Error Handling

Product-Sensitive Programming Interface |

Table 1. Contents of the File Feedback Information Available in the File Information Data Structure (INFDS)

From To
(Posi- (Posi-
tions tions Format Length Information
44-47) 48-51)
1 8 Char- 8 File name (same as subfield location *FILE).
acter
9 9 Char- 1 Open indication (1 = open).
acter
10 10 Char- 1 End of file (1 = end of file)
acter
11 15 Zoned 5 (zero Status code (same as subfield location *STATUS).
decimal decimal
posi-
tions)
16 21 Char- 6 Operation code (same as subfield location *OPCODE).
acter
22 29 Char- 8 Name of the RPG/400 routine in which the exception/error
acter occurred (same as subfield location *ROUTINE).
30 37 Char- 8 RPG/400 source statement sequence number.
acter
38 42 Zoned 5 (zero User-specified reason for error on SPECIAL file.
decimal decimal
posi-
tions)
38 45 Char- 8 For a program described file the record identifying indicator is
acter placed left-adjusted in the field (same as the subfield location
*RECORD). For an externally described file, the name of the
record being processed when the exception/error occurred.
46 52 Char- 7 Machine or system message number.
acter
53 56 Char- 4 MI/ODT (machine instruction/object definition template)
acter number.
57 66 Char- 10 Unused.
acter

Table 2 (Page 1 of 2). Contents of the File Feedback Information Available in the File-Information Data Struc-
ture (INFDS) Valid after a POST Operation to a Specific De

From To
(Posi- (Posi-
tions tions Format Length Information
44-47) 48-51)
67 70 Zoned 4 (zero Screen size (same as subfield location *SIZE).
decimal decimal
posi-
tions)

Chapter 2. RPG/400 Program Cycle and Error Handling 29

RPG Program Cycle and Error Handling

Table 2 (Page 2 of 2). Contents of the File Feedback Information Available in the File-Information Data Struc-
ture (INFDS) Valid after a POST Operation to a Specific De

From To
(Posi- (Posi-
tions tions Format Length Information
44-47) 48-51)
71 72 Zoned 2 (zero The national language input capability of the device is for
decimal decimal single characters. The value is 0 (same as subfield location
posi- *INP).
tions)
73 74 Zoned 2 (zero The national language output capability of the device is for
decimal decimal single characters. The value is 0 (same as subfield location
posi- *0UT).
tions)
75 76 Zoned 2 (zero The preferred national language mode of the device is for
decimal decimal single characters. The value is 0 (same as subfield location
posi- *MODE).
tions)

Note: The remaining feedback information (starting at position 81) is copied from
the open feedback and 1/O feedback areas, which are described in the Data Man-
agement Guide. The description in the information column indicates system usage
of the fields and may not apply to the RPG/400 user. For example, information in
positions 241 and 242 is used by the system to determine the start of the file-
dependent feedback area and is not applicable to the RPG/400 user.

The length of the INFDS depends on two factors: the device type of the file, and on
whether DISK files are keyed or not. The minimum length is 528; but some files
require a longer INFDS.

* For WORKSTN files, the INFDS is long enough to hold the device-specific feedback
information for any type of display or ICF file starting at position 241. For
example, if the longest device-specific feedback information requires 390 bytes,
the INFDS for WORKSTN files is 630 bytes long (240+390=630).

e For externally-described DISK files, the INFDS is at least long enough to hold
the longest key in the file beginning at position 401.

Table 3 (Page 1 of 3). Contents of the Open Feedback Information Available in the File-Information Data Struc-
ture (INFDS)
From To
(Posi- (Posi-
tions tions Format Length Information
44-47) 48-51)
81 82 Char- 2 Open data path (ODP) type:
acter DS Device file
DB Database member
SP Spooled file
83 92 Char- 10 Name of the file. For a nonspooled file, this is the name of
acter the file actually being opened. For a spooled file, this is the
name of the device file or the inline data file being opened.
93 102 Char- 10 Name of the library containing the file. For a spooled input
acter file, this is *N.

30 RPG/400 Reference

RPG Program Cycle and Error Handling

Table 3 (Page 2 of 3). Contents of the Open Feedback Information Available in the File-Information Data Struc-
ture (INFDS)

From To

(Posi- (Posi-

tions tions Format Length Information

44-47) 48-51)

103 112 Char- 10 Name of the spooled file. This entry is set only if the ODP

acter type is SP. It is the name of a database file containing the
spooled input or output records.

113 122 Char- 10 Name of the library where the spooled file is located.

acter

123 124 Binary 2 Spooled file number (supplied only for spooled output).

125 126 Binary 2 Record length (number of bytes transferred at a time).

127 128 Binary 2 Reserved.

129 138 Char- 10 Member name:

acter e |If ODP type is DB, this entry is the member name in the
file named in positions 83 through 92.
e If ODP type is SP, this entry is the member name in the
file named in positions 103 through 112.

139 142 Binary 4 Not used.

143 146 Binary 4 Not used.

147 148 Binary 2 File type (supplied only if the ODP type is DS or SP). See the
Data Management Guide for file type codes.

149 151 Char- 3 Reserved.

acter

152 153 Binary 2 Number of rows on a display screen or number of lines on a
printed page (supplied only for a display device or a printer).

154 155 Binary 2 Number of columns on a display screen or number of charac-
ters per printed line (supplied only for display device or
printer).

156 159 Binary 4 Number of records in the member at open time. This entry is
supplied only if the ODP type is DB or SP and the file is being
opened for input.

160 161 Char- 2 Access type (supplied only if ODP type is DB):

acter KU Keyed, unique
KF Keyed, first-in-first-out (FIF0) with duplicate keys
KL Keyed, last-in-first-out (LIF0) with duplicate keys
AR Arrival sequence
162 162 Char- 1 Duplicate key indication. This entry is set only if the access
acter path is KU, KF, or KL:.
D Duplicate keys allowed if the access path is KF or KL.
U Duplicate keys are not allowed; all keys are unique and
the access path is KU.

163 163 Char- 1 Source file indication. This entry contains Y if this file is

acter being opened as a source file.

164 173 Char- 10 User file control block (UFCB) parameters. This entry indi-

acter cates which UFCB parameters are in effect.

Chapter 2. RPG/400 Program Cycle and Error Handling 31

RPG Program Cycle and Error Handling

Table 3 (Page 3 of 3). Contents of the Open Feedback Information Available in the File-Information Data Struc-
ture (INFDS)

From To

(Posi- (Posi-

tions tions Format Length Information

44-47) 48-51)

174 183 Char- 10 User file control block (UFCB) overrides. This entry indicates

acter which override parameters are in effect.

184 185 Binary 2 Offset to volume label fields of open feedback area. This
entry is supplied only for tape or diskette; otherwise, the field
contains zero.

186 187 Binary 2 Maximum number of records that can be sent or received in
a block when using blocked record /0.

188 189 Binary 2 Overflow line number (supplied only for a printer file).

190 191 Binary 2 Blocked record I/O record increment. This is the number of
bytes to add to the address of a record to get the address of
the next record in a block.

192 196 5 Unused.

197 206 Char- 10 Name of the requester program device.

acter

207 208 Binary 2 File open count. If the file is opened nonshareable, this field
contains a 1. If the file is opened shareable, this field con-
tains the number of UFCBs currently attached to this file.

209 210 Binary 2 Reserved.

211 212 Binary 2 Number of based-on physical members opened. For logical
members, this is the number of physical members over which
the logical member was opened. For physical members, this
field is always set to 1.

213 213 Char- 1 Miscellaneous flags. See the Data Management Guide for

acter details.

214 215 Char- 2 Open Identifier. Value is unique for a full open of a file

acter (SHARE(*NO) or the first open of a file with SHARE(*YES)).
Allows matching between this file and an entry on the associ-
ated Data Queue.

216 217 Binary 2 Maximum Record Length. This value includes the data, plus
source sequence numbers, option indicators, response indi-
cators, and P-data lengths if applicable. If this field is 0, then
use the field from location 125 to 126.

See Table 5 on page 34 for the values after a POST operation with a device speci-
fied in factor 1.

32 RPG/400 Reference

RPG Program Cycle and Error Handling

Table 4. Contents of the Input/Output Feedback Information Available in the File-Information Data Structure
(INFDS)

From To

(Posi- (Posi-
tions tions Format Length Information
44-47) 48-51)

241 242 Binary 2 Offset to file-dependent feedback information. See the Data
Management Guide for the layout of feedback information for
specific files.

243 246 Binary 4 Write operation count. This entry is updated only when a
Write operation is completed successfully. For information
specific to ICF, see the corresponding entry in the ICF
Programmer’s Guide.

247 250 Binary 4 Read operation count. This entry is updated only when a
Read operation is completed successfully. For database
files, this entry is not updated for a position-only request. For
information specific to ICF, see the corresponding entry in the
ICF Programmer’s Guide.

251 254 Binary 4 Write/Read operation count. This entry is updated only when
a Write/Read operation is completed successfully.

255 258 Binary 4 Other 1/O operation count. Number of successful operations
other than Write, Read, or Write/Read. Updated only when
operation successfully completes. Count includes update,
delete, force-end-of-data, force-end-of-volume, ACQ, REL, and
release record lock requests.

259 259 1 Unused.

260 260 Char- 1 Current operation. This entry represents the last operation
acter requested.

See Data Management Guide, Common 1/O Feedback Area
table for operation codes.

261 270 Char- 10 Name of the record format just processed, which is either:

acter ¢ Specified on the 1/O request

e Determined by system processing.

For a display device, the default name is either the name of
the only record format in the file or the previous record format
name for the record put to the display that contains input
data. For ICF files, see the description of the FMTSLT param-
eter on the CL commands ADDICFDEVE and OVRICFDEVE in
the ICF Programmer’s Guide.

271 272 Char- 2 Device class.

acter In the Data Management Guide, see the Common /O Feed-

back Area table for device class codes.

273 282 Char- 10 Program device name. This entry is the name of the
acter program device for which the operation just completed.

283 286 Binary 4 Length of the record processed by the last I/O operation
(supplied for display device file, database file, tape file, and
ICF file). On ICF write operations, this entry is the record
length of the data. On ICF read operations, this entry is the
length of the record for the last input operation.

Chapter 2. RPG/400 Program Cycle and Error Handling 33

RPG Program Cycle and Error Handling

File Dependent Feedback Information

Complete file-dependent feedback information is available in the Data Management
Guide. Refer to the section “I/O Feedback Area” and the tables on the file-
dependent area in that section.

To calculate the From and To positions (positions 44 through 47 and 48 through 51
of the input specifications) that specify the subfields of the file-information data
structure (INFDS) for the file-dependent area, use the Offset, Data Type, and
Length given in the Data Management Guide and do the following calculations:

From = 367 + Offset
To = From - 1 + Character_Length
Character _Length = Length (in bytes)

For example, for the relative record number of a subfile record, the Data Manage-
ment Guide gives:

Offset = 9
Data Type is Binary
Length = 2

Therefore,

From = 367 + 9
1 +

376,
To = 376 - = 377

2
Contents of File-Information Data Structure after POST
After a POST operation with a program device specified in factor 1, the following

information overlays positions 241 on. For more information on these positions see
the section on getting attributes for display devices in the Data Management Guide.

Note

For information on the System/38 environment POST operation, see the
System/38 RPG Il Reference Manual and Programmer's Guide, SC21-7725.

Table 5 (Page 1 of 4). Contents of the Input/Output Feedback Information Available in the File-Information Data
Structure (INFDS) after a POST Operation

From To
(Posi- (Posi-
tions tions Format Length Information
44-47) 48-51)
241 250 Character 10 Program device name.
251 260 Character 10 Device description name.
261 270 Character 10 User ID
271 271 Character 1 Device class:
e ‘D’ is display
e ‘I"is ICF
e ‘U’ is unknown

34 RPG/400 Reference

RPG Program Cycle and Error Handling

Table 5 (Page 2 of 4). Contents of the Input/Output Feedback Information Available in the File-Information Data
Structure (INFDS) after a POST Operation

From To

(Posi- (Posi-
tions tions Format Length Information
44-47) 48-51)

272 277 Character 6 Device type:

e ‘3179’ 3179 display

e ‘317902' 3179 model 2 display

e ‘3180’ 3180 display

e ‘3196A’ 3196 model A1/A2 display
e ‘3196B’ 3196 model B1/B2 display
e ‘3197C1' 3197 model C1 display

e ‘3197C2' 3197 model C2 display

e ‘3197D1' 3197 model D1 display

e ‘3197D2' 3197 model D2 display

e ‘3197W1’" 3197 model W1 display
e ‘3197W2’ 3197 model W2 display
e ‘3270’ 3270 display

e ‘3476EA’ 3476 model EA display

e ‘3477FA’ 3477 model FA display

e ‘3477FC' 3477 model FC display

e ‘3477FD' 3477 model FD display

e ‘3477FG’ 3477 model FG display

e ‘3477FH' 3477 model FH display

e ‘3477FW 3477 model FW display
e ‘525111’ 5251 display

e ‘5291’ 5291 display

e ‘5292’ 5292 display

e ‘529202’ 5292 model 2 display

e ‘5555B1' 5555 model BO1 display
e ‘5555E1’ 5555 model EO1 display
e ‘APPC’ APPC

e ‘ASYNC’ Asynchronous

e ‘BSC’' Bisynchronous communications
e ‘BSCEL' BSCEL

e ‘DHCF77’ 3277 DHCEF display

» ‘DHCF78' 3278 DHCF display

e ‘DHCF79’ 3279 DHCF display

e ‘FINANC’ Finance

e ‘INTRA’ Intrasystem communications
e ‘LU’ LU1 communications

e ‘NVT’ Network virtual terminal

e ‘RETAIL’ Retail

e ‘SNUF’ SNUF

278 278 Character 1 *REQUESTER device. This flag indicates if this entry is
defining a *REQUESTER device.

¢ ‘Y’ is requesting program device.
e ‘N’ is not a requesting program device.

279 279 Character 1 Acquire status. Set even if a device is implicitly
acquired at open time.

e 'Y’ device is acquired.

¢ ‘N’ device is not acquired.

Chapter 2. RPG/400 Program Cycle and Error Handling 35

RPG Program Cycle and Error Handling

Table 5 (Page 3 of 4). Contents of the Input/Output Feedback Information Available in the File-Information Data
Structure (INFDS) after a POST Operation

From To
(Posi- (Posi-
tions tions Format Length Information
44-47) 48-51)
280 280 Character 1 Invite status.
* 'Y’ device is invited.
¢ ‘N’ device is not invited.
281 281 Character 1 Data available
¢ 'Y’ invited data is available.
¢ ‘N’ no data is available.
282 283 Binary 2 Number of rows on display.
284 285 Binary 2 Number of columns on display.
286 286 Character 1 Display allow blink capability.
¢ 'Y’ blink capable.
e ‘N’ not blink capable.
287 287 Character 1 Online/Offline status.
e ‘O’ display is online.
e ‘F display is offline.
288 288 Character 1 Display location.
e ‘L’ local display.
¢ ‘R’ remote display.
289 289 Character 1 Display type.
e ‘A’ alphanumeric or Katakana.
¢ ‘I ideographic.
290 290 Character 1 Keyboard type of display.
e ‘A’ alphanumeric or Katakana keyboard.
e ‘" ideographic keyboard.
291 291 Character 2 Session status (All communication types).
e ‘N’ transaction is not started.
e 'Y’ transaction is started.
292 292 Character 1 Synchronization level (APPC communications only).
¢ ‘0’ synchronization level O (SYNCLVL(*NONE)).
e ‘1’ synchronization level 1 (SYNCLVL(*CONFIRM)).
293 293 Character 1 Conversation being used (APPC communications only).
e ‘M’ mapped conversation.
e ‘B’ basic conversation.
294 301 Character 8 Remote Location (All communications types).
302 309 Character 8 Local LU name (APPC communications only).
310 317 Character 8 Local network ID (APPC communications only).
318 325 Character 8 Remote LU name (APPC communications only).
326 333 Character 8 Remote network ID (APPC communications only).
334 341 Character 8 Mode (APPC communications type only).

36 RPG/400 Reference

RPG Program Cycle and Error Handling

Table 5 (Page 4 of 4). Contents of the Input/Output Feedback Information Available in the File-Information Data

Structure (INFDS) after a POST Operation

From To

(Posi- (Posi-

tions tions Format Length Information
44-47) 48-51)

386 * Character * More fields

More information about feedback area layouts is avail-
able in the Data Management Guide.

End of Product-Sensitive Programming Interface

File Exception/Error Subroutine (INFSR)

To identify the user-written RPG/400 subroutine that may receive control following
file exception/errors, make the following entries on a continuation line (or on the
main file line) for the file description specifications:

Position Entry

6 F
7-52 Blank (if the information is specified on a separate continuation line)
53 K (indicates a continuation statement)

54-59 INFSR

60-65 Name of the subroutine that receives control when exception/errors
occur on this file. The subroutine name can be *PSSR, which indicates
that the program exception/error subroutine is given control for the
exception/errors on this file.

A file exception/error subroutine (INFSR) receives control when an exception/error
occurs on an implicit (primary or secondary) file operation or on an explicit file oper-
ation that does not have an indicator specified in positions 56 and 57. The file
exception/error subroutine can also be run by the EXSR operation code. Any of the
RPG/400 operations can be used in the file exception/error subroutine. Factor 1 of
the BEGSR operation and factor 2 of the EXSR operation must contain the name of
the subroutine that receives control (same name as specified in positions 60
through 65 of the file description specifications continuation line).

The ENDSR operation must be the last specification for the file exception/error sub-
routine and should be specified as follows:

Position Entry

6 C

7-17 Blank

18-27 Can contain a label that is used in a GOTO specification within the sub-
routine.

28-32 ENDSR

33-42 Optional entry to designate where control is to be returned following
processing of the subroutine. The entry must be a 6-position character
field, literal, or array element whose value specifies one of the following
return points.

Note:

If the return points are specified as literals, they must be
enclosed in apostrophes. If they are specified as named constants, the
constants must be character and must contain only the return point with

Chapter 2. RPG/400 Program Cycle and Error Handling

37

RPG Program Cycle and Error Handling

38

RPG/400 Reference

no leading blanks. If they are specified in fields or array elements, the
value must be left-adjusted in the field or array element.

*DETL Continue at the beginning of detail lines.
*GETIN Continue at the get input record routine.

*TOTC Continue at the beginning of total calculations.
*TOTL Continue at the beginning of total lines.

*QFL Continue at the beginning of overflow lines.
*DETC Continue at the beginning of detail calculations.

*CANCL Cancel the processing of the program.

Blanks Return control to the RPG/400 default error handler. This
applies when factor 2 is a value of blanks and when factor 2
is not specified. If the subroutine was called by the EXSR
operation and factor 2 is blank, control returns to the next
sequential instruction. Blanks are only valid at runtime.

43-59 Blank.

Remember the following when specifying the file exception/error subroutine:

e The programmer can explicitly call the file exception/error subroutine by speci-
fying the name of the subroutine in factor 2 of the EXSR operation.

e After the ENDSR operation of the file exception/error subroutine is run, the
RPG/400 language resets the field or array element specified in factor 2 to
blanks. Thus, if the programmer does not place a value in this field during the
processing of the subroutine, the RPG/400 default error handler receives control
following processing of the subroutine unless the subroutine was called by the
EXSR operation. Because factor 2 is set to blanks, the programmer can specify
the return point within the subroutine that is best suited for the exception/error
that occurred. If the subroutine was called by the EXSR operation and factor 2
of the ENDSR operation is blank, control returns to the next sequential instruction
following the EXSR operation. A file exception/error subroutine can handle
errors in more than one file.

e |f a file exception/error occurs during the start or end of a program, control
passes to the RPG/400 default error handler, and not to the user-written file
exception/error or subroutine (INFSR).

» Because the file exception/error subroutine may receive control whenever a file
exception/error occurs, an exception/error could occur while the subroutine is
running if an 1/0O operation is processed on the file in error. If an
exception/error occurs on the file already in error while the subroutine is
running, the subroutine is called again; this will result in a program loop unless
the programmer codes the subroutine to avoid this problem. One way to avoid
such a program loop is to set a first-time switch in the subroutine. If it is not
the first time through the subroutine, set on a halt indicator and issue the RETRN
operation as follows:

RPG Program Cycle and Error Handling

L2 [A TG AU DAY SR R s IUPTPINE AP DT SRR A
CLONOINO2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
C+ If INFSR is already handling the error, exit.

C ERRRTN BEGSR

C SW IFEQ '1'

c SETON Hl1
C RETRN

Cx Otherwise, flag the error handler.

c ELSE

C MOVE '1' SW

C :

C : Error handling routine.
C :

C END

C* End error processing.

C MOVE '0' SW

C ENDSR

Note: It may not be possible to continue processing the file after an 1/O error has
occurred. To continue, it may be necessary to issue a CLOSE operation and then
an OPEN operation to the file.

Status Codes

File Status Codes

Any code placed in the subfield location *STATUS that is greater than 99 is consid-
ered to be an exception/error condition. If the status code is greater than 99, the
error indicator, if specified in positions 56 and 57, is set on or the file
exception/error subroutine receives control. Location *STATUS is updated after
every file operation.

The codes in the following tables are placed in the subfield location *STATUS for the
file information data structure:

Table 6. Normal Codes

Code Device * RC? Condition

00000 No exception/error.

00002 W n/a Function key used to end display.

00011 W,D,SQ 11xx End of file on a read (input).

00012 W,D,SQ n/a No-record-found condition on a CHAIN, SETLL, and SETGT oper-
ations.

00013 w n/a Subfile is full on WRITE operation.

Note: 1“Device” refers to the devices for which the condition applies. The following abbreviations are used: P =
PRINTER; D = DISK; W = WORKSTN; SP = SPECIAL; SQ = Sequential. The major/minor return codes under column
RC apply only to WORKSTN files. 2The formula mmnn is used to described major/minor return codes: mm is the
major and nn the minor.

Chapter 2. RPG/400 Program Cycle and Error Handling 39

RPG Program Cycle and Error Handling

Table 7 (Page 1 of 2). Exception/Error Codes

Code Device ? RC2 Condition

01011 W,D,SQ n/a Undefined record type (input record does not match record identi-
fying indicator).

01021 W,D,SQ n/a Tried to write a record that already exists (file being used has
unique keys and key is duplicate, or attempted to write duplicate rel-
ative record number to a subfile).

01031 W,D,SQ n/a Match field out of sequence.

01041 n/a n/a Array/table load sequence error.

01051 n/a n/a Excess entries in array/table file.

01052 n/a n/a Clearing of table prior to dump of data failed.

01071 W,D,SQ n/a Numeric sequence error.

011214 W n/a No indicator on the DDS keyword for Print key.

011224 W n/a No indicator on the DDS keyword for Roll Up key.

011234 w n/a No indicator on the DDS keyword for Roll Down key.

011244 W n/a No indicator on the DDS keyword for Clear key.

011254 W n/a No indicator on the DDS keyword for Help key.

011264 W n/a No indicator on the DDS keyword for Home key.

01201 W 34xx Record mismatch detected on input.

01211 all n/a I/O operation to a closed file.

01215 all n/a OPEN issued to a file already opened.

012163 all yes Error on an implicit OPEN/CLOSE operation.

012173 all yes Error on an explicit OPEN/CLOSE operation.

01218 D,SQ n/a Record already locked.

01221 D,SQ n/a Update operation attempted without a prior read.

01231 SP n/a Error on SPECIAL file.

01235 P n/a Error in PRTCTL space or skip entries.

01241 D,SQ n/a Record number not found. (Record number specified in record
address file is not present in file being processed.)

01251 w 80xx 81xx Permanent I/O error occurred.

01255 w 82xx 83xx Session or device error occurred. Recovery may be possible.

01261 W n/a Attempt to exceed maximum number of acquired devices.

01281 W n/a Operation to unacquired device.

01282 W 0309 Job ending with controlled option.

01285 W 0800 Attempt to acquire a device already acquired.

01286 w n/a Attempt to open shared file with SAVDS or IND options.

01287 W n/a Response indicators overlap IND indicators.

01299 W,D,SQ yes Other 1/0 error detected.

40 RPG/400 Reference

RPG Program Cycle and Error Handling

Table 7 (Page 2 of 2). Exception/Error Codes

Code Device ! RC? Condition
01331 w 0310 Wait time exceeded for READ from WORKSTN file.
Note: 1“Device” refers to the devices for which the condition applies. The following abbreviations are used: P =

PRINTER; D = DISK; W = WORKSTN; SP = SPECIAL; SQ = Sequential. The major/minor return codes under column
RC apply only to WORKSTN files. 2The formula mmnn is used to described major/minor return codes: mm is the
major and nn the minor. 3Any errors that occur during an open or close operation will result in a *STATUS value of
1216 or 1217 regardless of the major/minor return code value. 4See Figure 7 on page 24 for special handling.

For System/38 Environment *STATUS, see the System/38 RPG Il Reference
Manual and Programmer's Guide, SC21-7725.

Note

The

following table shows the major/minor return code to *STATUS value mapping

for errors that occur to AS/400 programs using WORKSTN files only. See the Data
Management Guide for more information on Major/Minor return codes.

Major Minor *STATUS
00,02 all 00000

03 all (except 09,10) 00000

03 09 01282

03 10 01331

04 all 01299

08 all 012851

11 all 00011

34 all 01201
80,81 all 01251
82,83 all 01255
Note: 1The return code field will not be updated
for a *STATUS value of 1285, 1261, or 1281 because
these conditions are detected before calling data
management. To monitor for these errors, you must
check for the *STATUS value and not for the corre-
sponding major/minor return code value.

Program Exception/Errors

Some examples of program exception/errors are: division by zero, SQRT of a nega-

tive
erro

number, invalid array index, an error on a CALL, or FREE operation code, an
r return from a called program, and a start position or length out of range for a

string operation. They can be handled in one of the following ways:

An indicator can be specified in positions 56 and 57 of the calculation specifica-
tions for an operation code. This indicator is set on if an exception/error occurs
during the processing of the specified file operation. The optional program
status data structure is updated with the exception/error information. You can
determine the action to be taken by testing the indicator.

Chapter 2. RPG/400 Program Cycle and Error Handling 41

RPG Program Cycle and Error Handling

* A program exception/error subroutine can be specified. You enter *PSSR in
factor 1 of a BEGSR operation to specify this subroutine. Information regarding
the program exception/error is made available through a program status data
structure that is specified with an S in position 18 of the data structure state-
ment on the input specifications.

 |f the indicator or the program exception/error subroutine is not present,
program exception/errors are handled by the RPG/400 default error handler.

Program Status Data Structure

42

RPG/400 Reference

A program status data structure can be defined to make program exception/error
information available to an RPG/400 program.

A data structure is defined as a program status data structure by an S in position
18 of the data structure statement. A program status data structure contains prede-
fined subfields that provide you with information about the program exception/error
that occurred.

The location of the subfields in the program status data structure is defined by
special keywords or by predefined From and To positions. In order to access the
subfields, you assign a name to each subfield in positions 53 through 58.

The keywords must be specified, left-adjusted in positions 44 through 51. The
keywords are not labels and cannot be used to access the subfields. Short entries
are padded on the right with blanks. The keywords and their descriptions are as
follows:

Keyword Description

*STATUS Five-digit numeric field with zero decimal positions, that contains the
status code.

*ROUTINE Eight-position character field that contains the name of the RPG/400
routine in which the exception/error occurred. This subfield is updated
at the beginning of an RPG/400 routine or after a program call only
when the *STATUS subfield is updated with a nonzero value. The fol-
lowing names identify the routines:

*INIT Program initialization
*DETL Detail lines

*GETIN Get input record
*TOTC Total calculations
*TOTL Total lines

*DETC Detail calculations
*QFL Overflow lines

*TERM Program ending
pgmname Name of program called (first 8 characters).

Note: *ROUTINE is not valid unless you use the normal RPG/400 cycle.
Logic that takes the program out of the normal RPG/400 cycle may
cause *ROUTINE to reflect an incorrect value.

*PARMS Three-digit numeric field that contains the number of parameters
passed to this program from the calling program.

*PROGRAM Ten-position character field that contains the name of the program in
which this program status data structure is specified.

RPG Program Cycle and Error Handling

Information from the program status data structure is also provided in a formatted

dump.

Table 8 provides the layout of the subfields of the data structure and the prede-
fined From and To positions of its subfields that can be used to access information
in this data structure.

Product-Sensitive Programming Interface

Table 8 (Page 1 of 2). Contents of the Program Status Data Structure

From To

(Posi- (Posi-

tions tions Format Length Information

44-47) 48-51)

1 10 Character 10 Program name (same as subfield location *PROGRAM).

11 15 Zoned 5 (zero Status code (same as subfield location *STATUS).

decimal decimal
positions)

16 20 Zoned 5 (zero Previous status code.

decimal decimal
positions)

21 28 Character 8 RPG/400 source statement sequence number.

29 36 Character 8 Name of the RPG/400 routine in which the exception or
error occurred (same as subfield location *ROUTINE).

37 39 Zoned 3 (zero Number of parameters passed to this program (same

decimal decimal as subfield location *PARMS).
positions)

40 42 Character 3 Exception type (CPF for a OS/400 system exception or
MCH for a machine exception).

43 46 Character 4 Exception number. For a CPF exception, this field
contains a CPF message number. For a machine
exception, it contains a machine exception number.

47 50 Character 4 MI/ODT (machine instruction / object definition tem-
plate) number.

51 80 Character 30 Work area for messages. This area is only meant for
internal use by the RPG/400 compiler. The organiza-
tion of information will not always be consistent. It can
be displayed by the user.

81 90 Character 10 Name of library in which the program is located.

91 170 Character 80 Retrieved exception data. CPF messages are placed in
this subfield when location *STATUS contains 09999.

171 174 Character 4 Identification of the exception that caused RPG9001
exception to be signaled (the called program failed).

175 198 24 Unused.

199 200 Zoned 2 First 2 digits of a 4-digit year. The same as the first 2

decimal digits of *YEAR.

201 208 Character 8 Name of file on which the last file operation occurred

(updated only when an error occurs).

Chapter 2. RPG/400 Program Cycle and Error Handling 43

RPG Program Cycle and Error Handling

Table 8 (Page 2 of 2). Contents of the Program Status Data Structure

From To

(Posi- (Posi-

tions tions Format Length Information

44-47) 48-51)

209 243 Character 35 Status information on the last file used. This informa-
tion includes the status code, the RPG/400 routine
name, the statement number, and record name. It is
updated only when an error occurs.

244 253 Character 10 Job name.

254 263 Character 10 User name from the user profile.

264 269 Zoned 6 (zero Job number.

decimal decimal
positions)

270 275 Zoned 6 (zero Date (in UDATE format) the program started running in

decimal decimal the system (UDATE is derived from this date). See on
positions) page 382 for a description of UDATE.

276 281 Zoned 6 (zero Date of program running (the system date in UDATE

decimal decimal format).
positions)

282 287 Zoned 6 (zero Time of program running in the format hhmmss.

decimal decimal
positions)

288 293 Character 6 Date (in UDATE format) the program was compiled.

294 299 Character 6 Time (in the format hhmmss) the program was com-
piled.

300 303 Character 4 Level of the compiler.

304 313 Character 10 Source file name.

314 323 Character 10 Source library name.

324 333 Character 10 Source file member name.

334 429 96 Unused.

44 RPG/400 Reference

| End of Product-Sensitive Programming Interface

Program Status Codes

Any code placed in the subfield location *STATUS that is greater than 99 is consid-
ered to be an exception/error condition. If the status code is greater than 99, the
error indicator, if specified in positions 56 and 57, is set on, or the program
exception/error subroutine receives control. Location *STATUS is updated when an
exception/error occurs.

The following codes are placed in the subfield location *STATUS for the program
status data structure:

Normal Codes

Code Condition
00000 No exception/error occurred
00001 Called program returned with the LR indicator on.

RPG Program Cycle and Error Handling

Exception/Error Codes

Code Condition

00100 Value out of range for string operation

00101 Negative square root

00102 Divide by zero

00121 Array index not valid

00122 OCUR outside of range

00123 Reset attempted during initialization step of program
00202 Called program failed; halt indicator (H1 through H9) not on
00211 Program specified on CALL or FREE not found

00221 Called program tried to use a parameter that was not passed to it
00231 Called program returned with halt indicator on

00232 Halt indicator on in this program

00233 Halt indicator on when RETRN operation run

00299 RPG/400 formatted dump failed

00333 Error on DSPLY operation

00401 Data area specified on IN/OUT not found
00402 *PDA not valid for non-prestart job

00411 Data area type or length does not match

00412 Data area not locked for output

00413 Error on IN/OUT operation

00414 User not authorized to use data area

00415 User not authorized to change data area

00421 Error on UNLCK operation

00431 Data area previously locked by another program
00432 Data area locked by program in the same process

00907 Decimal data error (digit or sign not valid)

00970 The level number of the compiler used to generate the program does
not agree with the level number of the RPG/400 run-time subroutines.

09998 Internal failure in RPG/400 compiler or in run-time subroutines

09999 Program exception in system routine.

Program Exception/Error Subroutine

To identify the user-written RPG/400 subroutine that is to receive control when a
program exception/error occurs, specify *PSSR in factor 1 of the subroutine's BEGSR
operation. If an indicator is not specified in positions 56 and 57 for the operation
code, control is transferred to this subroutine when a program exception/error
occurs. In addition, the subroutine can also be called by the EXSR operation. PSSR
can be specified in positions 60 through 65 of the file description specifications con-
tinuation line for the file exception/error subroutine (INFSR in positions 54 through
59), and receives control if a file exception/error occurs.

Any of the RPG/400 operation codes can be used in the program exception/error
subroutine. The ENDSR operation must be the last specification for the subroutine,
and the factor 2 entry on the ENDSR operation specifies the return point following the
running of the subroutine. For a discussion of the valid entries for factor 2, see
“File Exception/Error Subroutine (INFSR)” on page 37.

Remember the following when specifying a program exception/error subroutine:

* You can explicitly call the *PSSR subroutine by specifying *PSSR in factor 2 of
the EXSR operation.

Chapter 2. RPG/400 Program Cycle and Error Handling 45

RPG Program Cycle and Error Handling

46

RPG/400 Reference

 After the ENDSR operation of the *PSSR subroutine is run, the RPG/400 language

resets the field or array element specified in factor 2 to blanks. Thus, if you do
not place a value in this field during the running of the subroutine, the RPG/400
default error handler receives control following the running of the subroutine,
unless the *PSSR subroutine was called by the EXSR operation. This allows you
to specify the return point within the subroutine that is best suited for the
running/error that occurred. If the subroutine was called by the EXSR operation
and factor 2 of the ENDSR operation is blank, control returns to the next sequen-
tial instruction following the EXSR operation.

Because the program exception/error subroutine may receive control whenever
a non-file exception/error occurs, an exception/error could occur while the sub-
routine is running. If an exception/error occurs while the subroutine is running,
the subroutine is called again; this will result in a program loop unless the pro-
grammer codes the subroutine to avoid this problem.

Chapter 3. RPG/400 Indicators

An indicator is a two-character entry on a specification that either is set on (1) or off
(0) as the result of an operation or is used to condition (or control) the processing
of an operation.

Indicators are defined either by an entry on the specification or by the RPG/400
program itself. The positions on the specification in which you define an indicator
determine how the indicator is used. An indicator that has been defined can then
be used to condition calculation and output operations.

The RPG/400 program sets and resets certain indicators at specific times during the
program cycle. In addition, the state of most indicators can be changed by the
SETON and SETOF operation codes. All indicators except MR, 1P, KA through KN, and
KP through KY can be set on with the SETON operation code; all indicators except MR
and 1P can be set off with the SETOF operation code.

This chapter is divided into the following topics:

* Indicators defined on the RPG/400 specifications

¢ Indicators not defined on the RPG/400 specifications
e Using indicators

¢ Indicators referred to as data.

Indicators Defined on RPG/400 Specifications

You can define an indicator on the RPG/400 specifications if it is specified as one of
the following:

e Overflow indicator (positions 33 and 34 of the file description specifications).

* Record identifying indicator (positions 19 and 20 of the input specifications).

e Control level indicator (positions 59 and 60 of the input specifications).

e Field indicator (positions 65 through 70 of the input specifications).

» Resulting indicator (positions 54 through 59 of the calculation specifications).

e *IN array, *IN,xx array element or *INxx field (See “Indicators Referred to As
Data” on page 75 for a description of how an indicator is defined when used
with one of these reserved words.).

The defined indicator can then be used to condition operations in the program.

Overflow Indicators

An overflow indicator is defined by an entry in positions 33 and 34 of the file
description specifications. It is set on when the last line on a page has been
printed or passed. Valid indicators are 0A through 0G, 0V, and 01 through 99. A
defined overflow indicator can then be used to condition calculation and output
operations. A description of the overflow indicator and fetch overflow logic is given
in the PRINTER file section of the RPG/400 User’s Guide.

© Copyright IBM Corp. 1994 47

Record Identifying Indicators

48

RPG/400 Reference

A record identifying indicator is defined by an entry in positions 19 and 20 of the
input specifications and is set on when the corresponding record type is selected
for processing. That indicator can then be used to condition certain calculation and
output operations. Record identifying indicators do not have to be assigned in any
particular order.

The valid record identifying indicators are:

01-99
H1-H9
L1-19
LR
U1-us
RT

For an externally described file, a record identifying indicator is optional, but, if you
specify it, it follows the same rules as for a program described file.

Generally, the indicators 01 through 99 are used as record identifying indicators.
However, the control level indicators (L1 through L9) and the last record indicator
(LR) can be used to cause certain total steps to be processed. If L1 through L9 are
specified as record identifying indicators, lower level indicators are not set on.

When you select a record type for processing, the corresponding record identifying
indicator is set on. All other record identifying indicators are off except when a file
operation code is used at detail and total calculation time to retrieve records from a
file (see below). The record identifying indicator is set on after the record is
selected, but before the input fields are moved to the input area. The record identi-
fying indicator for the new record is on during total time for the old record; there-
fore, calculations processed at total time using the fields of the old record cannot
be conditioned by the record identifying indicator of the old record. You can set the
indicators off at any time in the program cycle; they are set off before the next
primary or secondary record is selected.

If you use a file operation code on the calculation specifications to retrieve a record,
the record identifying indicator is set on as soon as the record is retrieved from the
file. The record identifying indicator is not set off until the appropriate point in the
RPG/400 cycle. (See Figure 6 on page 23.) Therefore, it is possible to have
several record identifying indicators for the same file, as well as record-not-found
indicators, set on concurrently if several operations are issued to the same file
within the same RPG/400 program cycle.

Rules for Assigning Record Identifying Indicators
When you assign record identifying indicators to records in a program described
file, remember the following:

e You can assign the same indicator to two or more different record types if the
same operation is to be processed on all record types. To do this, you specify
the record identifying indicator in positions 19 and 20, and specify the record
identification codes for the various record types in an OR relationship.

e You can associate a record identifying indicator with an AND relationship, but it
must appear on the first line of the group. Record identifying indicators cannot
be specified on AND lines.

* An undefined record (a record in a program described file that was not
described by a record identification code in positions 21 through 41) causes the
program to halt.

* A record identifying indicator can be specified as a record identifying indicator
for another record type, as a field indicator, or as a resulting indicator. No
diagnostic message is issued, but this use of indicators may cause erroneous
results.

When you assign record identifying indicators to records in an externally described
file, remember the following:

» AND/OR relationships cannot be used with record format names; however, the
same record identifying indicator can be assigned to more than one record.

e The record format name, rather than the file name, must be specified in posi-
tions 7 through 14.

For an example of record identifying indicators, see Figure 8.

LI I AR ETTITITE: PUPIPINE. UVRPR' SAPRUR. PR JUPIPUPE. DDA ¢ DUPUPRP PPNy AN
IFilenameSgNORiPos1INCCPos2NCCPos3NCC.PFromTo++DField+L1IM1FrPIMnZr. . .*
I*

I*Record identifying indicator 01 is set on if the record read
Ixcontains an S in position 1 or an A in position 1.

IINPUT1I NS 01 1 CS

I OR 1CA

I 1 25 FLD1

I* Record identifying indicator 02 is set on if the record read

I* contains XYZA in positions 1 through 4.

I NS 02 1 CX2 CY3 CZ

I AND 4 CA

I 1 15 FLDA
I 16 20 FLDB

I* Record identifying indicator 95 is set on if any record read

I* does not meet the requirements for record identifying indicators
I 01 or 02.

I NS 95

LI IO R ST DU DAY SUPRPRE NP JUPUPINR ORI ¢ DUV AR A
IFilenameSqNORiPos1INCCPos2NCCPos3NCC.PFromTo++DField+LIM1FrPIMnZr. . .*
I*

I* For an externally described file, record identifying indicator 10
I is is set on if the ITMREC record is read and record identifying
I* indicator 20 is set on if the SLSREC or COMREC records are read.
IITMREC 10

ISLSREC 20

ICOMREC 20

Figure 8. Examples of Record Identifying Indicators

Chapter 3. RPG/400 Indicators 49

Control Level Indicators (L1-L9)

A control level indicator is defined by an entry in positions 59 and 60 of the input
specifications, designating an input field as a control field. It can then be used to
condition calculation and output operations. The valid control level indicator entries
are L1 through L9.

A control level indicator designates an input field as a control field. When a control
field is read, the data in the control field is compared with the data in the same
control field from the previous record. If the data differs, a control break occurs,
and the control level indicator assigned to the control field is set on. You can then
use control level indicators to condition operations that are to be processed only
when all records with the same information in the control field have been read.
Because the indicators stay on for both total time and the first detail time, they can
also be used to condition total printing (last record of a control group) or detail
printing (first record in a control group). Control level indicators are set off before
the next record is read.

You can specify a control break after the first record containing a control field is
read. The control fields in this record are compared to an area in storage that con-
tains hexadecimal zeros. Because fields from two different records are not being
compared, total calculations and total output operations are bypassed for this cycle.

Control level indicators are ranked in order of importance with L1 being the lowest
and L9 the highest. All lower level indicators are set on when a higher level indi-
cator is set on as the result of a control break. However, the lower level indicators
can be used in the program only if they have been defined. For example, if L8 is
set on by a control break, L1 through L7 are also set on. The LR (last record)
indicator is set on when the input files are at end of file. LR is considered the
highest level indicator and forces L1 through L9 to be set on.

You can also define control level indicators as record identifying or resulting indica-
tors. When you use them in this manner, the status of the lower level indicators is
not changed when a higher level indicator is set on. For example, if L3 is used as
a resulting indicator, the status of L2 and L1 would not change if L3 is set on.

The importance of a control field in relation to other fields determines how you
assign control level indicators. For example, data that demands a subtotal should
have a lower control level indicator than data that needs a final total. A control field
containing department numbers should have a higher control level indicator than a
control field containing employee numbers if employees are to be grouped within
departments (see Figure 9 on page 51).

Rules for Control Level Indicators
When you assign control level indicators, remember the following:

* You can specify control fields only for primary or secondary files.

* You cannot specify control fields for full procedural files, binary format fields, or
look-ahead fields.

e You cannot use control level indicators when an array name is specified in
positions 53 through 58 of the input specifications; however, you can use
control level indicators with an array element.

e Control level compare operations are processed for records in the order in
which they are found, regardless of the file from which they come.

50 RPG/400 Reference

T

e If you use the same control level indicator in different record types or in dif-

ferent files, the control fields associated with that control level indicator must be
the same length (see Figure 9 on page 51).

The control level indicator field length is the length of a control level indicator in
a record. For example, if L1 has a field length of 10 bytes in a record, the
control level indicator field length for L1 is 10 positions.

The control level indicator field length for split control fields is the sum of the
lengths of all fields associated with a control level indicator in a record. If L2
has a split control field consisting of 3 fields of length: 12 bytes, 2 bytes and 4
bytes; then the control level indicator field length for L2 is 18 positions.

If multiple records use the same control level indicator, then the control level
indicator field length is the length of only one record, not the sum of all the
lengths of the records.

Within a program, the sum of the control level indicator field lengths of all
control level indicators cannot exceed 256 positions.

Record positions in control fields assigned different control level indicators can

overlap in the same record type (see Figure 10 on page 52). For record types
that require control or match fields, the total length of the control or match field
must be less than or equal to 256. For example, in Figure 10 on page 52, 15

positions have been assigned to control levels.

Field names are ignored in control level operations. Therefore, fields from dif-
ferent record types that have been assigned the same control level indicator
can have the same name.

Control levels need not be written in any sequence. An L2 entry can appear
before L1. All lower level indicators need not be assigned.

If different record types in a file do not have the same number of control fields,
unwanted control breaks can occur. Figure 11 on page 53 shows an example
of how to avoid unwanted control breaks.

Figure 11 on page 53 shows an example of how to avoid unwanted control breaks.

. T S . DR R P Y A

Ax EMPLOYEE MASTER FILE -- EMPMSTL

A
A
A
A
A*
A*
A*
A
A
A
A
A*
A*

EMPLNO

R EMPREC PFILE(EMPMSTL)
EMPLNO 6
3
DIVSON 1

(ADDITIONAL FIELDS)

R EMPTIM PFILE(EMPMSTP)
6
3
DIVSON 1

(ADDITIONAL FIELDS)

Figure 9 (Part 1 of 2). Control Level Indicators (Two Record Types)

Chapter 3. RPG/400 Indicators 51

I I TP P A SR AR DUPIE SRR DUV SRy S
IFilenameSgNORiPos1INCCPos2NCCPos3NCC.PFromTo++DField+LIM1FrPIMnZr. .. .*
I*

I* In this example, control level indicators are defined for three
I fields. The names of the control fields (DIVSON, DEPT, EMPLNO)
I[* give an indication of their relative importance.

I* The division (DIVSON) is the most important group.

I It is given the highest control level indicator used (L3).

I* The department (DEPT) ranks below the division;

I L2 is assigned to it. The employee field (EMPLNO) has

I the lTowest control level indicator (L1) assigned to it.

I*

IEMPREC 10

I EMPLNOL1
I DIVSONL3
I DEPT L2
I*

I The same control level indicators can be used for different record
I types. However, the control fields having the same indicators must
I* be the same length. For records in an externally described file,
I the field attributes are defined in the external description.

I*

IEMPTIM 20

I EMPLNOL1
I DEPT L2
I DIVSONL3

Figure 9 (Part 2 of 2). Control Level Indicators (Two Record Types)

Control Field 1
,-/‘

1234567891011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

“— —
/ Control Field 2

A total of 15 positions has been
assigned to these control levels.

Figure 10. Overlapping Control Fields

52 RPG/400 Reference

(L2)

Salesman Salesman Salesman Item Number Amount
Number Name Number

1 2 3 15 1 2 3 5 6

Salesman Record Item Record

Figure 11 (Part 1 of 3). How to Avoid Unwanted Control Breaks
I I S S UTUPN JUPRPE R | +..000.0. LA TR R A
IFilenameSqNORiPos1INCCPos2NCCPos3NCC.PFromTo++DField+LIM1FrPIMnZr. . .*
ISALES 01

I 1 2 L2FLD L2

I 3 15 NAME

IITEM 02

I 1 2 L2FLD L2

I 3 5 LIFLD L1

I 6 8 AMT
Cx*

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComment s+++++++%

(L2)

(L1)

C* Indicator 11 is set on when the salesman record is read.

C=*
cC o1
Cx*

11

C* Indicator 11 is set off when the item record is read.
C* This allows the normal L1 control break to occur.

C*
C 02
C 02
CL1
CL2

AMT

L1TOT
L2TOT

ADD L1TOT
ADD L2TOT
ADD LRTOT

L1TOT
L2TOT
LRTOT

Figure 11 (Part 2 of 3). How to Avoid Unwanted Control Breaks

11
50
50
50

Chapter 3. RPG/400 Indicators

53

I [P DU~ STTTTIC AP AN SUDRE TIPS RPN AP ¢ JARPRPE RPN A
OName++++DFBASbSaNO1INO2NO3Field+YBEnd+PConstant/editword+++++++++. .. %
OPRINTER D 11 01

0 L2FLD 5
0 NAME 25
0 D 1 02

0 L1FLD 15
0 AMT Z 15
(0E3

0* When the next item record causes an L1 control break, no total
O* output is printed if indicator 11 is on. Detail calculations
O+ are then processed for the item record.

0=
0 T 1 LIN11
0 L1TOT ZB 25
0 27 '*!'
0 T 1 L2
0 L2TOT ZB 25
0 28 'xx!
0 T 1 LR
0 LRTOT ZB 25
01 JOHN SMITH . Unwanted 01 JOHN SMITH
control
100 3 break 100 3
100 2 100 2
5 * 5 *
101 4 101 4
4 * 4 *
9 x* 9 k%
02 JANE DOE . Unwanted 02 JANE DOE
control
100 6 break 100 6
100 2 100 2
8 * 8
101 3 101 3
3 * 3 *
11 ** 11
20 20
Output Showing Unwanted Control Level Break Corrected Output

Figure 11 (Part 3 of 3). How to Avoid Unwanted Control Breaks
Different record types normally contain the same number of control fields.

However, some applications require a different number of control fields in some
records.

54 RPG/400 Reference

The salesman records contain only the L2 control field. The item records contain
both L1 and L2 control fields. With normal RPG/400 coding, an unwanted control
break is created by the first item record following the salesman record. This is
recognized by an L1 control break immediately following the salesman record and
results in an asterisk being printed on the line below the salesman record.

¢ Numeric control fields are compared in zoned decimal format. Packed numeric
input fields lengths can be determined by the formula:

d=2n-1

Where d = number of digits in the field and n = length of the input field. The
number of digits in a packed numeric field is always odd; therefore, when a
packed numeric field is compared with a zoned decimal numeric field, the
zoned field must have an odd length.

e When numeric control fields with decimal positions are compared to determine
whether a control break has occurred, they are always treated as if they had no
decimal positions. For instance, 3.46 is considered equal to 346.

 If you specify a field as numeric, only the positive numeric value determines
whether a control break has occurred; that is, a field is always considered to be
positive. For example, -5 is considered equal to +5.

Split Control Field

A split control field is formed when you assign more than one field in an input
record the same control level indicator. For a program described file, the fields that
have the same control level indicator are combined by the program in the order
specified in the input specifications and treated as a single control field (see

Figure 12). The first field defined is placed in the high-order (leftmost) position of
the control field, and the last field defined is placed in the low-order (rightmost)
position of the control field.

L I R . D R R T DUV, U ¢ DRP Y A
IFilTenameSgNORiPos1INCCPos2NCCPos3NCC.PFromTo++DField+LIM1FrPIMnZr.. . .*
IMASTER 01

I 28 31 CUSNO L4
I 15 20 ACCTNOL4
I 50 52 REGNO L4

Figure 12. Split Control Fields

For an externally described file, fields that have the same control level indicator are
combined in the order in which the fields are described in the data description
specifications (DDS), not in the order in which the fields are specified on the input
specifications. For example, if these fields are specified in DDS in the following
order:

EMPNO
DPTNO
REGNO

and if these fields are specified with the same control level indicator in the following
order on the input specifications:
REGNO L3

DPTNO L3

Chapter 3. RPG/400 Indicators 55

EMPNO L3

the fields are combined in the following order to form a split control field: EMPNO
DPTNO REGNO.

Some special rules for split control fields are:

e For one control level indicator, you can split a field in some record types and
not in others if the field names are different. However, the length of the field,
whether split or not, must be the same in all record types.

e You can vary the length of the portions of a split control field for different record
types if the field names are different. However, the total length of the portions
must always be the same.

* A split control field can be made up of a combination of packed decimal fields
and zoned decimal fields so long as the field lengths (in digits or characters)
are the same.

e You must assign all portions of a split control field in one record type the same
field record relation indicator and it must be defined on consecutive specifica-
tion lines.

Figure 13 shows examples of the preceding rules.

I I O STSPUPIPRG DUPUPPE O | S T, DUPUPUPE. U : DR U A
IFilenameSqNORiPos1NCCPos2NCCPos3NCC.PFromTo++DField+L1IM1FrPTMnZr. . .*
IDISK BC 91 95 C1

I OR 92 95 C2
I OR 93 95 C3
I

I* ATl portions of the split control field must be assigned the same
I* control level indicator and all must have the same field record
I* relation entry.

I 1 5 FLDIALL

6 10 FLD3D L4 93
14 20 FLD3E L4 93

I 46 50 FLD1B L1

I 11 13 FLDA L2

I 51 60 FLD2A L3

I 31 40 FLD2B L3

I 71 75 FLD3A L4 92
I 26 27 FLD3B L4 92
I 41 45 FLD3C L4 92
I 61 70 FLDB 92
I 21 25 FLDC 92
I

I

Figure 13. Split Control Fields—Special Rules

The record identified by a 1 in position 95 has two split control fields:

1. FLD1A and FLD1B
2. FLD2A and FLD2B

56 RPG/400 Reference

Field Indicators

The record identified with a 2 in position 95 has three split control fields:

1. FLD1A and FLD1B
2. FLD2A and FLD2B
3. FLD3A, FLD3B, and FLD3C

The third record type, identified by the 3 in position 95, also has three split control
fields:

1. FLD1A and FLD1B
2. FLD2A and FLD2B
3. FLD3D and FLD3E

A field indicator is defined by an entry in positions 65 and 66, 67 and 68, or 69 and
70 of the input specifications. The valid field indicators are:

01-99
H1-H9
ul-us
RT

You can use a field indicator to determine if the specified field or array element is
greater than zero, less than zero, zero, or blank. Positions 65 through 68 are valid
for numeric fields only; positions 69 and 70 are valid for numeric or character fields.
An indicator specified in positions 65 and 66 is set on when the numeric input field
is greater than zero; an indicator specified in positions 67 and 68 is set on when
the numeric input field is less than zero; and an indicator specified in positions 69
and 70 is set on when the numeric input field is zero or when the character input
field is blank. You can then use the field indicator to condition calculation or output
operations.

A field indicator is set on when the data for the field or array element is extracted
from the record and the condition it represents is present in the input record. This
field indicator remains on until another record of the same type is read and the
condition it represents is not present in the input record, or until the indicator is set
off as the result of a calculation.

You can use halt indicators (H1 through H9) as field indicators to check for an error
condition in the field or array element as it is read into the program.

Rules for Assigning Field Indicators
When you assign field indicators, remember the following:

¢ Indicators for plus, minus, zero, or blank are set off at the beginning of the
program. They are not set on until the condition (plus, minus, zero, or blank) is
satisfied by the field being tested on the record just read.

¢ Field indicators cannot be used with entire arrays or with look-ahead fields.
However, an entry can be made for an array element.

e A numeric input field can be assigned two or three field indicators. However,
only the indicator that signals the result of the test on that field is set on; the
others are set off.

» |f the same field indicator is assigned to fields in different record types, its state
(on or off) is always based on the last record type selected.

Chapter 3. RPG/400 Indicators 57

* When different field indicators are assigned to fields in different record types, a
field indicator remains on until another record of that type is read. Similarly, a
field indicator assigned to more than one field within a single record type
always reflects the status of the last field defined.

e The same field indicator can be specified as a field indicator on another input
specification, as a resulting indicator, as a record identifying indicator, or as a
field record relation indicator. No diagnostic message is issued, but this use of
indicators could cause erroneous results, especially when match fields or level
control is involved.

» |f the same indicator is specified in all three positions, the indicator is always
set on when the record containing this field is selected.

Resulting Indicators

58

RPG/400 Reference

A resulting indicator is defined by an entry in positions 54 through 59 of the calcu-
lation specifications. The purpose of the resulting indicators depends on the opera-
tion code specified in positions 28 through 32. (See the individual operation code
in Chapter 11, “Operation Codes” for a description of the purpose of the resulting
indicators.) For example, resulting indicators can be used to test the result field
after an arithmetic operation, to identify a record-not-found condition, to indicate an
exception/error condition for a file operation, or to indicate an end-of-file condition.

The valid resulting indicators are:

01-99
H1-H9

0A-0G, OV

L1-L9

LR

U1-U8

KA-KN, KP-KY (valid only with SETOF)
RT

You can specify resulting indicators in three places (positions 54-55, 56-57, and
58-59) of the calculation specifications. The positions in which the resulting indi-
cator is defined determine the condition to be tested.

In most cases, when a calculation is processed, the resulting indicators are set off,
and, if the condition specified by a resulting indicator is satisfied, that indicator is
set on. However, there some exceptions to this rule, notably “LOKUP (Look Up)”
on page 286, “SETOF (Set Off)” on page 351, and “SETON (Set On)” on

page 352. A resulting indicator can be used as a conditioning indicator on the
same calculation line or in other calculations or output operations. When you use it
on the same line, the prior setting of the indicator determines whether or not the
calculation is processed. If it is processed, the result field is tested and the current
setting of the indicator is determined (see Figure 14 on page 59).

Rules for Assigning Resulting Indicators
When assigning resulting indicators, remember the following:

¢ Resulting indicators cannot be used when the result field refers to an entire
array.

¢ |f the same indicator is used to test the result of more than one operation, the
last operation processed determines the setting of the indicator.

*IO

e When L1 through L9 indicators are used as resulting indicators and are set on,
lower level indicators are not set on. For example, if L8 is set on, L1 through
L7 are not set on.

e If H1 through H9 indicators are set on when used as resulting indicators, the
program halts unless the halt indicator is set off prior to being checked in the
program cycle. (See Chapter 2, “RPG/400 Program Cycle and Error Handling”
on page 11).

e The same indicator can be used to test for more than one condition depending
on the operation specified.

R A T DU | R T FUPUPIR P DU PP AN

CLONOINO2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

Cx*
C*
C=*
Cx*
Cx*
Cx*
Cx*
C*
C*
Cx*
C

Cx*
C

C

C

C=*
Cx*
Cx*
C

C*

Two resulting indicators are used to test for the different
conditions in a subtraction operation. These indicators are
used to condition the calculations that must be processed for

a payroll job. Indicator 10 is set on if the hours worked (HRSWKD)
are greater than 40 and is then used to condition all operations
necessary to find overtime pay. If Indicator 20 is not on

(the employee worked 40 or more hours), regular pay based on a
40-hour week is calculated.

HRSWKD SUB 40 OVERTM 30 1020

N20 PAYRAT MULT 40 PAY 62H

10 OVERTM MULT OVRRAT OVRPAY 62H

10 OVRPAY ADD PAY PAY

If indicator 20 is on (employee worked less than 40 hours), pay
based on less than a 40-hour week is calculated.

20 PAYRAT MULT HRSWKD PAY

Figure 14. Resulting Indicators Used to Condition Operations

Indicators Not Defined on the RPG/400 Specifications

Not all indicators that can be used as conditioning indicators in an RPG/400 program
are defined on the specification forms. External indicators (U1 through U8) are
defined by a CL command or by a previous RPG/400 program. Internal indicators
(1P, LR, MR, and RT) are defined by the RPG/400 program cycle itself.

Chapter 3. RPG/400 Indicators 59

External Indicators

The external indicators are Ul through U8. These indicators can be set in a CL
program or in an RPG/400 program. In a CL program, they can be set by the SWS
(switch-setting) parameter on the CL commands CHGJOB (Change Job) or CRTJOBD
(Create Job Description). In an RPG/400 program, they can be set as a resulting
indicator or field indicator.

The status of the external indicators can be changed in the program by specifying
them as resulting indicators on the calculation specifications or as field indicators
on the input specifications. However, changing the status of the OS/400 job
switches with a CL program during processing of an RPG/400 program has no effect
on the copy of the external indicators used by the RPG/400 program. Setting the
external indicators on or off in the program has no effect on file operations. File
operations function according to the status of the U1 through U8 indicators when the
program is initialized. However, when a program ends normally with LR on, the
external indicators are copied back into storage, and their status reflects their last
status in the RPG/400 program. The current status of the external indicators can
then be used by other programs.

Note: When using RETRN with the LR indicator off, you are specifying a return
without an end and, as a result, no external indicators are updated.

Internal Indicators

60

RPG/400 Reference

Internal indicators include:

e First page indicator

e Last record indicator

e Matching record indicator
e Return Indicator.

First Page Indicator (1P)

The first page (1P) indicator is set on by the RPG/400 program when the program
starts running and is set off by the RPG/400 program after detail time output. The
first record will be processed after detail time output. The 1P indicator can be used
to condition heading or detail records that are to be written at 1P time. Do not use
the 1P indicator to condition output fields that require data from input records
because the input data will not be available.

The 1P indicator cannot be used to condition total or exception output lines and
should not be used in an AND relationship with control level indicators. The 1P indi-
cator cannot be specified as a resulting indicator.

Last Record Indicator (LR)

In a program that contains a primary file, the last record indicator (LR) is set on by
after the last record from a primary/secondary file has been processed, or it can be
set on by the programmer.

The LR indicator can be used to condition calculation and output operations that are
to be done at the end of the program. When the LR indicator is set on, all other
control level indicators (L1 through L9) are also set on. If any of the indicators L1
through L9 have not been defined as control level indicators, as record identifying
indicators, as resulting indicators, or by *INxx, the indicators are set on when LR is
set on, but they cannot be used in other specifications.

In a program that does not contain a primary file, you can set the LR indicator on
as one method to end the program. (For more information on how to end a
program without a primary file, see Chapter 2, “RPG/400 Program Cycle and Error
Handling” on page 11.) To set the LR indicator on, you can specify the LR indicator
as a record identifying indicator or a resulting indicator. If LR is set on during detail
calculations, all other control level indicators are set on at the beginning of the next
cycle. LR and the record identifying indicators are both on throughout the
remainder of the detail cycle, but the record identifying indicators are set off before
LR total time.

Matching Record Indicator (MR)

The matching record indicator (MR) is associated with the matching field entries M1
through M9. It can only be used in a program when Match Fields are defined in the
primary and at least one secondary file.

The MR indicator is set on when all the matching fields in a record of a secondary
file match all the matching fields of a record in the primary file. It remains on
during the complete processing of primary and secondary records. It is set off
when all total calculations, total output, and overflow for the records have been
processed.

At detail time, MR always indicates the matching status of the record just selected
for processing; at total time, it reflects the matching status of the previous record. If
all primary file records match all secondary file records, the MR indicator is always
on.

Use the MR indicator as a field record relation indicator, or as a conditioning indi-
cator in the calculation specifications or output specifications to indicate operations
that are to be processed only when records match. The MR indicator cannot be
specified as a resulting indicator.

For more information on Match Fields and multifile processing, see Chapter 15,
“General File Considerations.”

Return Indicator (RT)

You can use the return indicator (RT) to indicate to the internal RPG/400 logic that
control should be returned to the calling program. The test to determine if RT is on
is made after the test for the status of LR and before the next record is read. If RT
is on, control returns to the calling program. RT is set off when the program is
called again.

Because the status of the RT indicator is checked after the halt indicators (H1
through H9) and LR indicator are tested, the status of the halt indicators or the LR
indicator takes precedence over the status of the RT indicator. If both a halt indi-
cator and the RT indicator are on, the halt indicator takes precedence. If both the
LR indicator and RT indicator are on, the program ends normally.

Chapter 3. RPG/400 Indicators 61

RT can be set on as a record identifying indicator, a resulting indicator, or a field
indicator. It can then be used as a conditioning indicator for calculation or output
operations.

For a description of how RT can be used to return control to the calling program,
see “Communicating with Other Objects” in the RPG/400 User’s Guide.

Using Indicators

Indicators that you have defined as overflow indicators, control level indicators,
record identifying indicators, field indicators, resulting indicators, *IN, *IN,xx, *INxx,
or those that are defined by the RPG/400 language can be used to condition files,
calculation operations, or output operations. An indicator must be defined before it
can be used as a conditioning indicator. The status (on or off) of an indicator is not
affected when it is used as a conditioning indicator. The status can be changed
only by defining the indicator to represent a certain condition.

File Conditioning

62

RPG/400 Reference

The file conditioning indicators are specified in positions 71 and 72 of the file
description specifications. Only the external indicators U1 through U8 are valid for
file conditioning. (An entry of UC can also be made in positions 71 and 72;
however, UC is not an indicator.)

If the external indicator specified in positions 71 and 72 is off when the program is
called, the file is not opened and file operations for that file are ignored while the
program is running. Primary and secondary input files are processed as if they
were at end-of-file. The end-of-file indicator is set on for all READ operations to that
file. Input, calculation, and output specifications for the file need not be conditioned
by the external indicator.

Rules for File Conditioning
When you condition files, remember the following:

» A file conditioning entry can be made for input, output, update, or combined
files.

* A file conditioning entry cannot be made for table or array input.

e Output files for tables can be conditioned by Ul through U8. If the indicator is
off, the table is not written.

* A record address file can be conditioned by Ul through U8, but the file proc-
essed by the record address file cannot be conditioned by U1 through U8.

 |If the indicator conditioning a primary file with matching records is off, the MR
indicator is not set on.

e Output does not occur for an output, an update, or a combined file if the indi-
cator conditioning the file is off.

 |If the indicator conditioning an input, an update, or a combined file is off, the
file is considered to be at end of file. The end-of-file indicator is set on for
READ, READC, READE, REDPE, and READP operations. CHAIN, EXFMT, SETGT, and
SETLL operations are ignored and no indicators are set.

Field Record Relation Indicators

Field record relation indicators are specified in positions 63 and 64 of the input
specifications. The valid field record relation indicators are:

01-99
H1-H9
MR
RT
L1-L9
U1-u8

Field record relation indicators cannot be specified for externally described files.

You use field record relation indicators to associate fields with a particular record
type when that record type is one of several in an OR relationship. The field
described on the specification line is available for input only if the indicator specified
in the field record relation entry is on or if the entry is blank. If the entry is blank,
the field is common to all record types defined by the OR relationship.

Assigning Field Record Relation Indicators

You can use a record identifying indicator (01 through 99) in positions 63 and 64 to
relate a field to a particular record type. When several record types are specified in
an OR relationship, all fields that do not have a field record relation indicator in posi-
tions 63 and 64 are associated with all record types in the OR relationship. To
relate a field to just one record type, you enter the record identifying indicator
assigned to that record type in positions 63 and 64 (see Figure 15 on page 65).

An indicator (01 through 99) that is not a record identifying indicator can also be
used in positions 63 and 64 to condition movement of the field from the input area
to the input fields.

Control fields, which you define with an L1 through L9 indicator in positions 59 and
60 of the input specifications, and match fields, which are specified by a match
value (M1 through M9) in positions 61 and 62 of the input specifications, can also be
related to a particular record type in an OR relationship if a field record relation indi-
cator is specified. Control fields or match fields in the OR relationship that do not
have a field record relation indicator are used with all record types in the OR
relationship.

If two control fields have the same control level indicator or two match fields have
the same matching level value, a field record relation indicator can be assigned to
just one of the match fields. In this case, only the field with the field record relation
indicator is used when that indicator is on. If none of the field record relation indi-
cators are on for that control field or match field, the field without a field record
relation indicator is used. Control fields and match fields can only have entries of
01 through 99 or H1 through H9 in positions 63 and 64.

Chapter 3. RPG/400 Indicators 63

64

RPG/400 Reference

You can use positions 63 and 64 to specify that the program accepts and uses
data from a particular field only when a certain condition occurs (for example, when
records match, when a control break occurs, or when an external indicator is on).
You can indicate the conditions under which the program accepts data from a field
by specifying indicators L1 through L9, MR, or Ul through U8 in positions 63 and 64.
Data from the field named in positions 53 through 58 is accepted only when the
field record relation indicator is on.

External indicators are primarily used when file conditioning is specified in positions
71 and 72 of the file description specifications. However, they can be used even
though file conditioning is not specified.

A halt indicator (H1 through H9) in positions 63 and 64 relates a field to a record that
is in an OR relationship and also has a halt indicator specified in positions 19 and
20.

Remember the following points when you use field record relation indicators:

* Control level (positions 59 and 60) and matching fields (positions 61 and 62)
with the same field record relation indicator must be grouped together.

» Fields used for control level (positions 59 and 60) and matching field entries
(positions 61 and 62) without a field record relation indicator must appear
before those used with a field record relation indicator.

e Control level (positions 59 and 60) and matching fields (positions 61 and 62)
with a field record relation indicator (positions 63 and 64) take precedence,
when the indicator is on, over control level and matching fields of the same
level without an indicator.

» Field record relations (positions 63 and 64) for matching and control level fields
(positions 59 through 62) must be specified with record identifying indicators
(01 through 99 or H1 through H9) from the main specification line or an OR
relation line to which the matching field refers. If multiple record types are spec-
ified in an OR relationship, an indicator that specifies the field relation can be
used to relate matching and control level fields to the pertinent record type.

* Noncontrol level (positions 59 and 60) and matching field (positions 61 and 62)
specifications can be interspersed with groups of field record relation entries
(positions 63 and 64).

e The MR indicator can be used as a field record relation indicator to reduce proc-
essing time when certain fields of an input record are required only when a
matching condition exists.

e The number of control levels (L1 through L9) specified for different record types
in the OR relationship can differ. There can be no control level for certain
record types and a number of control levels for other record types.

« |f all matching fields (positions 61 and 62) are specified with field record relation
indicators (positions 63 and 64), each field record relation indicator must have a
complete set of matching fields associated with it.

» |If one matching field is specified without a field record relation indicator, a com-
plete set of matching fields must be specified for the fields without a field
record relation indicator.

L A S

B T S . D R P Y A

IFilenameSgNORiPos1INCCPos2NCCPos3NCC.PFromTo++DField+LIM1FrPIMnZr. .. .*

IREPORT AA 14
I OR 16

I
I
I*

1 C5
1 Cé6
20 30 FLDB
2 10 FLDA 07

I+ Indicator 07 was specified elsewhere in the program.

I*
I
I

40 50 FLDC 14
60 70 FLDD 16

Figure 15. Field Record Relation

The file contains two different types of records, one identified by a 5 in position 1
and the other by a 6 in position 1. The FLDC field is related by record identifying
indicator 14 to the record type identified by a 5 in position 1. The FLDD field is
related to the record type having a 6 in position 1 by record identifying indicator 16.
This means that FLDC is found on only one type of record (that identified by a 5 in
position 1) and FLDD is found only on the other type. FLDA is conditioned by indicator
07, which was previously defined elsewhere in the program. FLDB is found on both
record types because it is not related to any one type by a record identifying indi-
cator.

Function Key Indicators

You can use function key indicators in a program that contains a WORKSTN device if
the associated function keys are specified in data description specifications (DDS).
Function keys are specified in DDS with the CFxx or CAxx keyword. For an example
of using function key indicators with a WORKSTN file, see the WORKSTN chapter in the
RPG/400 User’s Guide.

Function Key Indicator Corresponding Func- Function Key Indicator Corresponding Function
tion Key Key
KA 1 KM 13
KB 2 KN 14
KC 3 KP 15
KD 4 KQ 16
KE 5 KR 17
KF 6 KS 18
KG 7 KT 19
KH 8 KU 20
Kl 9 KV 21
KJ 10 KW 22
KK 11 KX 23
KL 12 KY 24

The function key indicators correspond to function keys 1 through 24. Function key
indicator KA corresponds to function key 1, KB to function key 2 . . . KY to function
key 24.

Function key indicators that are set on can then be used to condition calculation or
output operations. Function key indicators can be set off by the SETOF operation.

Chapter 3. RPG/400 Indicators 65

Halt Indicators (H1-H9)

You can use the halt indicators (H1 through H9) to indicate errors that occur during
the running of a program. The halt indicators can be set on as record identifying
indicators, field indicators, or resulting indicators.

The halt indicators are tested at the *GETIN step of the RPG/400 cycle (see
Chapter 2, “RPG/400 Program Cycle and Error Handling” on page 11). If a halt
indicator is on, a message is issued to the user. The following responses are valid:

e Set off the halt indicator and continue the program.
e Issue a dump and end the program.
e End the program with no dump.

If a halt indicator is on when a RETRN operation is processed or when the LR indi-
cator is on, the called program ends abnormally. The calling program is informed
that the called program ended with a halt indicator on.

For a detailed description of the steps that occur when a halt indicator is on, see
the detailed flowchart of the RPG/400 cycle in Chapter 2, “RPG/400 Program Cycle
and Error Handling” on page 11.

Indicators Conditioning Calculations

66

RPG/400 Reference

Indicators that are used to specify the conditions under which a calculation is done
are to be defined elsewhere in the program. Indicators to condition calculations
can be specified in positions 7 and 8 and/or in positions 9 through 17.

Positions 7 and 8
You can specify control level indicators (L1 through L9 and LR) in positions 7 and 8
of the calculation specifications.

If positions 7 and 8 are blank, the calculation is processed at detail time, is a state-
ment within a subroutine, or is a declarative statement. If indicators L1 through L9
are specified, the calculation is processed at total time only when the specified indi-
cator is on. If the LR indicator is specified, the calculation is processed during the
last total time.

Note: An LO entry can be used to indicate that the calculation is a total calculation
that is to be processed on every program cycle.

Positions 9-17

You can use positions 9 through 17 of the calculation specifications to specify indi-
cators that control the conditions under which an operation is processed. The valid
entries for positions 9 through 17 are:

01-99

H1-H9

MR
0A-0G, OV
L1-L9

LR

ul-us
KA-KN, KP-KY
RT

Any indicator that you use in positions 9 through 17 must be previously defined as
one of the following types of indicators:

» Overflow indicators (file description specifications, positions 33 and 34)
¢ Record identifying indicators (input specifications, positions 19 and 20)
e Control level indicators (input specifications, positions 59 and 60)

* Field indicators (input specifications, positions 65 through 70)

* Resulting indicators (calculation specifications, positions 54 through 59)
e External indicators

* Indicators are set on, such as LR and MR

e *IN array, *IN,xx array element, or *INxx field (see “Indicators Referred to As
Data” on page 75 for a description of how an indicator is defined when used
with one of these reserved words).

You can specify one, two, or three indicators (positions 10 and 11, 13 and 14, and
16 and 17) on each line. If the indicator must be off to condition the operation,
place an N before the appropriate indicator (positions 9, 12, and 15). When more
than one indicator is specified in positions 9 through 17, the indicators are in an AND
relationship. The indicators on one line or indicators in grouped AND/OR lines, plus
the control level indicators (if specified in positions 7 and 8), must all be exactly as
specified before the operation is done as in Figure 16.

LI IS O UG UM SPIPUIT DUPIPE. PP AP OO c JUPIPPE. U A
CLONOINO2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
Cx*

C 2511 SUB TOTAL TOTAL A
CL2 16NL3 TOTAL MULT 05 SLSTAX B
Cx*

Figure 16. Conditioning Operations (Control Level Indicators)

Assume that indicator 25 represents a record type and that a control level 2 break
occurred when record type 25 was read. L1 and L2 are both on. All operations
conditioned by the control level indicators in positions 7 and 8 are done before
operations conditioned by control level indicators in positions 9 through 17. There-
fore, the operation in [[J occurs before the operation in [[J. The operation in [}
is done on the first record of the new control group indicated by 25, whereas the
operation in [[J is a total operation done for all records of the previous control

group.

The operation in [fJ can be done when the L2 indicator is on provided the other
conditions are met: Indicator 10 must be on; the L3 indicator must not be on.

The operation conditioned by both L2 and NL3 is done only when a control level 2
break occurs. These two indicators are used together because this operation is not
to be done when a control level 3 break occurs, even though L2 is also on.

Lines of conditioning indicators in positions 9 through 17 can be placed in AND/OR

relationships. AND/OR is specified in positions 7 and 8. A maximum of seven
AND/OR lines can be specified in one group.

Chapter 3. RPG/400 Indicators 67

68

RPG/400 Reference

Some special considerations you should know when using conditioning indicators in
positions 9 through 17 are as follows:

With externally described work station files, the conditioning indicators on the
calculation specifications must be either defined in the RPG program or be
defined in the DDS source for the workstation file.

With program described workstation files, the indicators used for the work-
station file are unknown at compile time of the RPG program. Thus indicators
01-99 are assumed to be declared and they can be used to condition the calcu-
lation specifications without defining them.

Halt indicators can be used to end the program or to prevent the operation from
being processed when a specified error condition is found in the input data or
in another calculation. Using a halt indicator is necessary because the record
that causes the halt is completely processed before the program stops. There-
fore, if the operation is processed on an error condition, the results are in error.
A halt indicator can also be used to condition an operation that is to be done
only when an error occurs.

If LR is specified in positions 9 through 17, the calculation is done after the last
record has been processed or after LR is set on.

If a control level indicator is used in positions 9 through 17 and positions 7 and
8 are not used (detail time), the operation conditioned by the indicator is done
only on the record that causes a control break or any higher level control break.

If a control level indicator is specified in positions 7 and 8 (total time) and MR is
specified in positions 9 through 17, MR indicates the matching condition of the
previous record and not the one just read that caused the control break. After
all operations conditioned by control level indicators in positions 7 and 8 are
done, MR then indicates the matching condition of the record just read.

If positions 7 and 8 and positions 9 through 17 are blank, the calculation speci-
fied on the line is done at detail calculation time.

Figure 17 through Figure 19 show examples of conditioning indicators.

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

Cx*

Cx AN and OR entries group line of indicators. When indicators 01, 02,
Cx 03, and 04 are on, or when indicators 01, 02, 03, and 05 are on, the
Cx calculation is processed.

C*

C 01 02 03

CAN 04

COR 01 02 03

CAN 05 FIELDA SUB FIELDB QTY 40 23

Cx*

C+ The L4 calculations are performed under one of three conditions:

C+ 01 and 02 are on, but not 03; or 01 and 03 are on, but not 02;

Cx or 02 and 03 are on, but not 01. Each OR entry in positions

C+ 7 and 8 identifies the start of a new group of conditions.

Cx*

CL4 01 02Ne3

COR O01NO2 03

CORNO1 02 03SUM ADD SUMTOT SUMTOT 82H

Cx*

C* Seven conditioning indicators must be satisfied before the operation
Cx 1is processed: L4, 01, 02, 04, 05, and 06 must be on, and 03 must be
Cx off.

C*

CL4 01 02Ne3

CAN 04 05 06SUM ADD SUMTOT SUMTOT 82H

C*

Figure 17 (Part 1 of 2). Calculation Conditioning Indicators in AND and OR Lines

Chapter 3. RPG/400 Indicators

69

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
Cx*

Cx This calculation is done under one of three conditions: (1) when
C* 1indicator 15 is on, (2) when indicators 20 and 25 are on, or (3)
C* when indicator 30 is on. Each OR entry in positions 7 and 8 iden-
C+ tifies the start of a new group of conditions.

C 15

COR 20

CAN 25

COR 30 SUM ADD SUMTOT SUMTOT

Cx In this example, indicators 20 and 25 could have been

C+ coded in an AND relationship on the same line as follows:

C 15

COR 20 25

COR 30 SUM ADD SUMTOT SUMTOT

C

Figure 17 (Part 2 of 2). Calculation Conditioning Indicators in AND and OR Lines

IFilenameSgNORiPos1INCCPos2NCCPos3NCC.PFromTo++DField+L1IM1FrPIMnZr. . .*
I*

I Field indicators can be used to condition operations. Assume the
I* program is to find weekly earnings including overtime. The over-
I time field is checked to determine if overtime was entered.

I If the employee has worked overtime, the field is positive and -
I* indicator 10 is set on. 1In all cases the weekly regular wage

I is calculated. However, overtime pay is calculated only

I if indicator 10 is on.

I*

ITIME AB 01

I 1 7 EMPLNO

I 8 1000VERTM 10
I 15 202RATE

I 21 252RATEOT

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
C*

C+x Field indicator 10 was assigned on the input specifications.

C+x It is used here to condition calculation operations.

Cx*

C RATE MULT 40 WAGE 62H
c 10 OVERTM MULT RATEOT OVERPY 62H
c 10 WAGE ADD OVERPY TOTAL 62

Figure 18. Conditioning Operations (Field Indicators)

70 RPG/400 Reference

L3N R A DU DU ST DU O DU SPU : DUPPE. U AN
IFilenameSgNORiPos1INCCPos2NCCPos3NCC.PFromTo++DField+LIM1FrPIMnZr. .. .*
I*

I* A record identifying indicator is used to condition an operation.
I* When a record is read with a T in position 1, the 01 indicator is
I set on. If this indicator is on, the field named SAVE is added
I to SUM. When a record without T in position 1 is read, the 02

I+ indicator is set on. The subtract operation, conditioned by 02,
I+ then performed instead of the add operation.

I*

IFILE AA 01 1 CT

I OR 02 1INCT

I 10 152SAVE

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
Cx*

C+ Record identifying indicators 01 and 02 are assigned on the input
Cx specifications. They are used here to condition calculation

C+ operations.

C*
C 01 ADD SAVE SUM 82
C 02 SUB SAVE SUM 82

Figure 19. Conditioning Operations (Record Identifying Indicators)

Indicators Conditioning Output
Indicators that you use to specify the conditions under which an output record or an
output field is written must be previously defined in the program. Indicators to con-
dition output are specified in positions 23 through 31. All indicators are valid for
conditioning output.

The indicators you use to condition output must be previously defined as one of the
following types of indicators:

¢ Overflow indicators (file description specifications, positions 33 and 34)

* Record identifying indicators (input specifications, positions 19 and 20)

Control level indicators (input specifications, positions 59 and 60)

Field indicators (input specifications, positions 65 through 70)

Resulting indicators (calculation specifications, positions 54 through 59)

Indicators set by the RPG/400 program such as 1P and LR

External indicators set prior to or during program processing

e IN array, *IN,xx array element, or *INxx field (see “Indicators Referred to As
Data” on page 75 for a description of how an indicator is defined when used
with one of these reserved words).

If an indicator is to condition an entire record, you enter the indicator on the line
that specifies the record type (see Figure 20 on page 73). If an indicator is to
condition when a field is to be written, you enter the indicator on the same line as
the field name (see Figure 20 on page 73).

Chapter 3. RPG/400 Indicators 71

72

RPG/400 Reference

Conditioning indicators are not required on output lines. If conditioning indicators
are not specified, the line is output every time that type of record is checked for
output. If you specify conditioning indicators, one indicator can be entered in each
of the three separate output indicator fields (positions 24 and 25, 27 and 28, and 30
and 31). If these indicators are on, the output operation is done. An N in the posi-
tion preceding each indicator (positions 23, 26, or 29) means that the output opera-
tion is done only if the indicator is not on (a negative indicator). No output line
should be conditioned by all negative indicators; at least one of the indicators
should be positive. If all negative indicators condition a heading or detail operation,
the operation is done at the beginning of the program cycle when the first page
(1P) lines are written.

You can specify output indicators in an AND/OR relationship by specifying AND/OR in
positions 14 through 16. An unlimited number of AND/OR lines can be used.

AND/OR lines can be used to condition output records, but they cannot be used to
condition fields. However, you can condition a field with more than three indicators
by using the SETON operation in calculations. For example, if indicators 10, 12, 14,
16, and 18 are needed to condition an output field, in calculations use the SETON
operation to set indicator 20 on if indicators 10, 12, and 14 are on. Then condition
the output field with indicators 20, 16, and 18.

Other special considerations you should know about for output indicators are as
follows:

e The first page indicator (1P) allows output on the first cycle before the primary
file read, such as printing on the first page. The line conditioned by the 1P
indicator must contain constant information used as headings or fields for
reserved words such as PAGE and UDATE. The constant information is specified
in the output specifications in positions 45 through 70. If 1P is used in an OR
relationship with an overflow indicator, the information is printed on every page
(see Figure 21 on page 73). Use the 1P indicator only with heading or detail
output lines. It cannot be used to condition total or exception output lines or
should not be used in an AND relationship with control level indicators.

e |f certain error conditions occur, you might not want output operation proc-
essed. Use halt indicators to prevent the data that caused the error from being
used (see Figure 22 on page 74).

e To condition certain output records on external conditions, use external indica-
tors to condition those records.

See the Printer File section in the RPG/400 User’s Guide for a discussion of the
considerations that apply to assigning overflow indicators on the output specifica-
tions.

OName++++DFBASbSaNO1INO2NO3Field+YBEnd+PConstant/editword+++++++++. . . *
(0E3

O+ One indicator is used to condition an entire line of printing.

0* When 44 is on, the fields named INVOIC, AMOUNT, CUSTR, and SALSMN
O+ are all printed.

0=

OPRINT D 1 44

0 INVOIC 10
0 AMOUNT 18
0 CUSTR 65
0 SALSMN 85
0=

Ox A control Tevel indicator is used to condition when a field should
O*x be printed. When indicator 44 is on, fields INVOIC, AMOUNT, and
0* CUSTR are always printed. However, SALSMN is printed for the

0+ first record of a new control group only if 44 and L1 are on.

(0E3

OPRINT D1 44

0 INVOIC 10
0 AMOUNT 18
0 CUSTR 65
0 L1 SALSMN 85

Figure 20. Output Indicators

OName++++DFBASbSaNO1NO2NO3Field+YBEnd+PConstant/editword+++++++++. . . *
(0E3

O0* The 1P indicator is used when headings are to be printed

0 on the first page only.

0=*

OPRINT H 3 1P

0 8 "ACCOUNT'

(0E3

O0* The 1P indicator and an overflow indicator can be used to print
O* headings on every page.

0=

OPRINT H 301 1P

0 OR OF

0 8 'ACCOUNT'

Figure 21. 1P Indicator

Chapter 3. RPG/400 Indicators 73

IFilenameSgNORiPos1INCCPos2NCCPos3NCC.PFromTo++DField+LIM1FrPIMnZr. .. .*
I*

I* When an error condition (zero in FIELDB) is found, the halt

I* indicator is set on.

I*

IDISK AA 01

I 1 3 FIELDALl

I 4 8OFIELDB H1

CLONOINO2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComments++++++*
Cx*
C+x When H1 is on, all calculations are bypassed.

C*

C H1 GOTO END

C :

C : Calculations
C :

C END TAG

OName++++DFBASbSaNO1NO2NO3Field+YBEnd+PConstant/editword+++++++++, . *
0=*

O+ FIELDA and FIELDB are printed only if Hl1 is not on.

0*x Use this general format when you do not want information that

O+ is in error to be printed.

(0ES

OPRINT H 0201 L1

0 50 "HEADING'
0 D 10 01NH1

0 FIELDA 5

0 FIELDBZ 15

Figure 22. Preventing Fields from Printing

74 RPG/400 Reference

Indicators Referred to As Data

*IN

*INXX

Additional Rules

An alternative method of referring to and manipulating RPG/400 indicators is pro-
vided by the RPG/400 reserved words *IN and *INxx.

The array *IN is a predefined array of 99 one-position, character elements repres-
enting the indicators 01 through 99. The elements of the array should contain only
the character values '0' (zero) or '1' (one).

The specification of the *IN array or the *IN,xx variable-index array element as a
field in an input record, as a result field, or as factor 1 in a PARM operation defines
indicators 01 through 99 for use in the program.

The operations or references valid for an array of single character elements are
valid with the array *IN except that the array *IN cannot be specified as a subfield
in a data structure, as a result field of a PARM operation, or in a SORTA operation.

The field *INxx is a predefined one-position character field where xx represents any
one of the RPG/400 indicators except 1P or MR.

The specification of the *INxx field or the *IN,n fixed-index array element (where n
=1-99) as a field in an input record, as a result field, or as factor 1 in a PARM
operation defines the corresponding indicator for use in the program.

You can specify the field *INxx wherever a one-position character field is valid
except that *INxx cannot be specified as a subfield in a data structure, as the result
field of a PARM operation, or in a SORTA operation.

Remember the following rules when you are working with the array *IN, the array
element *IN,xx or the field *INxx:

e Moving a character '0' (zero) or *OFF to any of these fields sets the corre-
sponding indicator off.

e Moving a character '1' (one) or *ON to any of these fields sets the corre-
sponding indicator on.

e Do not move any value, other than '0' (zero) or '1' (one), to *INxx. Any sub-
sequent normal RPG/400 indicator tests may yield undesirable results.

See Figure 23 on page 76 for some examples of indicators referred to as data.

Chapter 3. RPG/400 Indicators 75

CLONOINO2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComment s++++++*
Cx*

C* When this program is called, a single parameter is passed to

Cx control some logic in the program. The parameter sets the value
C+ of indicator 50. The parameter must be passed with a character
C+ value of 1 or 0.

C*

C *ENTRY PLIST

C *IN50 PARM SWITCH MOVE TO IND 50
Cx*

Cx*

C* Subroutine SUB1 uses indicators 61 through 68. Before the

C+ subroutine is processed, the status of these indicators used in

C+ the mainline program is saved. (Assume that the indicators are

C+ set off in the beginning of the subroutine.) After the subroutine
Cx 1is processed, the indicators are returned to their original state.
Cx*

C*

C MOVEA*IN,61 SAVS8 8 SAVE 61-68

C EXSR SUB1

C MOVEASAVS *IN,61 RESTORE 61-68

Figure 23 (Part 1 of 2). Examples of Indicators Referred to as Data

CLONOINO2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComment s++++++*

C*

C+ A code field (CODE) contains a numeric value of 1 to 5 and is

Cx wused to set indicators 71 through 75. The five indicators are set
Cx off. Field X is calculated as 70 plus the CODE field. Field X is
C+x then used as the index into the array *IN. Different subroutines

Cx are then used based on the status of indicators 71 through 75.

C*

C MOVEA'00000' *IN,71 SET OFF 71-75

C 70 ADD CODE X 30 X=IND TO SETON
C MOVE *ON *IN,X SETON ONE 71/75
c 71 EXSR CODE1l

c 72 EXSR CODE2

c 73 EXSR CODE3

C 74 EXSR CODE4

C 75 EXSR CODE5

Figure 23 (Part 2 of 2). Examples of Indicators Referred to as Data

76 RPG/400 Reference

Summary of Indicators

Table 9 and Table 10 show a summary of where indicators are defined, what the
valid entries are, where the indicators are used, and when the indicators are set on

and off. Table 10 on page 78 indicates the primary condition that causes each

type of indicator to be set on and set off by the RPG/400 program. “Function Key
Indicators” on page 65 lists the function key indicators and the corresponding func-

tion keys.

Table 9. Indicator Entries and Uses

Where Defined/Used

01-99

1P

H1-H9

L1-L9

LR

MR

OA-0OG
ov

uU1-us

KA-KN
KP-KY

RT

User
Defined

Overflow indicator, file
description specifications,
positions 33-34

Record identifying indi-
cator input specifications,
positions 19-20

Control level, input spec-
ifications, positions 59-60

Field level, input specifi-
cations, positions 65-70

Resulting indicator, calcu-
lation specifications, posi-
tions 54-59

X1

X2

RPG
Defined

Internal Indicator

External Indicator

Used

File conditioning, file
description specifications,
positions 71-72

File record relation, input
specifications 63-643

Control level, calculation
specifications, positions
7-8

Conditioning indicators,
calculation specifications,
positions 9-17

Output indicators, output
specifications, positions
23-31

X

X4

X

X

1The overflow indicator must be defined on the file description specification first.

2KA through KN and KP through KY can be used as resulting indicators only with the SETOF operation.

30nly a record identifying indicator from a main or OR record can be used to condition a control or match field.
be used to condition a control or match field.

4The 1P indicator is allowed only on heading and detail lines.

L1 or L9 cannot

Chapter 3. RPG/400 Indicators

77

Table 10. When Indicators Are Set On and Off by the RPG/400 Logic Cycle

Type of Set On Set Off
Indicator
Overflow When printing on or spacing or skipping past 0A-0G, 0V: After the following
the overflow line. heading and detail lines are completed.
01-99: By the user.
Record iden- | When specified primary / secondary record Before the next primary/secondary record is
tifying has been read and before total calculations read during the next processing cycle.
are processed; immediately after record is
read from a full procedural file.
Control level When the value in a control field changes. All At end of following detail cycle.
lower level indicators are also set on.
Field indi- By blank or zero in specified fields, by plus in Before this field status is to be tested the next
cator specified field, or by minus in specified field. time.
Resulting When the calculation is processed and the The next time a calculation is processed for

condition that the indicator represents is met.

which the same indicator is specified as a
resulting indicator and the specified condition
is not met.

Function key

When the corresponding function key is
pressed for WORKSTN files and at subsequent
reads to associated subfiles.

By SETOF or move fields logic for a WORKSTN
file.

External By CL command prior to beginning the By CL command prior to beginning the

u1-u8 program, or when used as a resulting or a program, or when used as a resulting or when

field indicator. used as a resulting or a field indicator.

H1-H9 As specified by programmer. When the continue option is selected as a
response to a message, or by the pro-
grammer.

RT As specified by programmer. When the program is called again.

Internal Indi-

cators

1P At beginning of processing before any input Before the first record is read.

records are read.

LR After processing the last primary/secondary At the beginning of processing, or by the pro-

record of the last file or by the programmer. grammer.

MR If the match field contents of the record of a When all total calculations and output are

secondary file correspond to the match field
contents of a record in the primary file.

completed for the last record of the matching
group.

78

RPG/400 Reference

Chapter 4. Control Specifications

The control specification statement, identified by an H in column 6, provides infor-
mation about generating and running programs. Only one control specification is
allowed per program. In the OS/400 system, you can create a data area named
RPGHSPEC to contain the information to be used for all RPG/400 programs that do not
contain a control specification.

The data area must be a character string 80 positions long. Use the CL command
CRTDTAARA (Create Data Area) to create the data area. Specify as the initial value
of the data area the entries for the control specification that are to be used. For
example, if the DEBUG operation is to be used for all RPG/400 programs, place an
initial value of 1 in position 15 of the data area. (See the CL Reference for a
description of the Create Data Area command.) The library in which the data area
is placed must be in the library list when the program is compiled.

The RPG/400 language uses the control specification that is present in the program.
In the OS/400 system, if a control specification is not present, the RPG/400 compiler
checks for the data area RPGHSPEC in *LIBL. If the data area is not found, the
RPG/400 compiler checks for the data area DFTHSPEC in QRPG. If it is not found, a
default specification with blanks in positions 7 through 74 is used, (no data area is
created). Since QRPG is the product library for the CRTRPGPGM command, if a data
area called RPGHSPEC exists in QRPG it will always be found. Use the data area
DFTHSPEC in QRPG to create a common control specification for your installation, and
use RPGHSPEC in your library to override this specification.

See the description of the individual entries for the meaning of blank entries and for
an explanation of the program name. If the default blank specification is used,
asterisks are printed on the compiler listing under the Page/Line heading.

Note: For System/38 Environment programs the product library used is QRPG38.

Control Specification Summary Chart

Table 11 (Page 1 of 3). Control Specification Summary Chart
Positions Entry Explanation
1-2 Page Entry assigns a page number to each specification.
number
3-5 Line Entry numbers the specification line.
number
6 Form type H Identification for a control (or header) specification.
7-14 Blank
15 Blank DEBUG and DUMP operations are not used. Compiler-generated
symbols are not placed in the symbol table.
DEBUG and DUMP operations are used. Compiler-generated symbols
1 are placed in the symbol table.
16-17 Blank

© Copyright IBM Corp. 1994 79

Table 11 (Page 2 of 3)

. Control Specification Summary Chart

Positions Name Entry Explanation

18 Currency Blank Dollar sign ($) is used as currency symbol for editing.
symbol

Any character except zero (0), asterisk (*), comma (,), period (.),
Currency ampersand (&), minus sign (-), letter C, or letter R can be specified
symbol as the currency symbol.

19 Date Blank Month/day/year format (mmddyy) if position 21 is blank. If position 21
format contains a D, I, or J, the day/month/year (ddmmyy) format is used.
(user
dates) M Month/day/year (mmddyy). The separator character used depends

on the entry in position 20 or position 21.

D Day/month/year (ddmmyy). The separator character used depends
on the entry in position 20 or position 21.

Y Year/month/day (yymmdd). The separator character used depends
on the entry in position 20 or position 21.

20 Date edit Any char- Separator character used between the fields of the date. If this posi-
(Y edit acter tion is blank, the separator is specified by the entry in position 21.
code)

& Blank is used as separator character.
21 Decimal Blank Numeric fields and edit codes use a period as decimal notation and a
Notation comma for separators. If position 19 is blank, uses mmddyy format.

If position 20 is blank, uses a slash (/) as separator for date.
Numeric fields use comma as decimal notation and a period as a
separator. If position 19 is blank, uses ddmmyy format. If position
20 is blank, uses a period (.) as separator for date.

J Numeric fields use comma as decimal notation and a period as a
separator. If position 19 is blank, uses ddmmyy format. If position
20 is blank, uses a period (.) as separator for date.

D Numeric fields use a period as decimal notation and a comma as a
separator. If position 19 is blank, uses ddmmyy format. If position
20 is blank, uses a slash (/) as separator for date.

22-25 Blank

26 Alternate Blank Normal collating sequence is used.
collating
sequence S Alternate collating sequence is used.

27-39 Blank

40 Sign Han- Blank The sign is always forced on input and output of zoned numeric
dling fields.

41 Forms Blank First line is printed only once.

Alignment
1 First line can be printed repeatedly.

42 Blank

43 File trans- Blank No file translation is requested.
lation

F Files are to be translated.

44-56 Blank

80 RPG/400 Reference

Table 11 (Page 3 of 3)

. Control Specification Summary Chart

Positions Name Entry Explanation
57 Transpar- Blank No check for DBCS in literals
ency
check 1 Check for DBCS in literals
58-74 Blank
75-80 Program Entry used to assign a unique name to the program. This name can
identifica- be overridden by the CRTRPGPGM command. If a name is not specified
tion in positions 75 through 80 or on the CRTRPGPGM command, but the
source file is a database file, the member name is used as the
program name. If the source is not from a database file, the program
name defaults to RPGOBJ.

Control Specification Statement

Position 6 (Form Type)

An H must appear in position 6 to identify this line as the control specification (or
header) statement.

Positions 7-14 (Reserved)

Positions 7 through 14 must be blank.

Position 15 (Debug)

Entry
Blank

Explanation

DEBUG and DUMP operations are not done. Compiler-generated
symbols are not placed in the symbol table.

DEBUG and DUMP operations are done. Compiler-generated symbols
are placed in the symbol table.

Use position 15 to indicate whether the DEBUG and DUMP operations will be done. A
1 in position 15 when the source program is compiled causes the compiler to gen-
erate the object code for these operations. When the program is run, DEBUG and
DUMP are performed.

The DEBUG entry also controls the contents of the symbol table that is produced with
the program. If position 15 contains a 1, the compiler-generated symbols, starting
with a period (.), are placed in the symbol table. If position 15 is blank, the
compiler-generated symbols are not placed in the symbol table. The symbol table is
printed with a program dump. You can then use the compiler-generated symbols in
debugging a program.

See the DEBUG and DUMP operations in Chapter 11, “Operation Codes” for more

information.

Chapter 4. Control Specifications 81

Positions 16-17 (Reserved)

Positions 16 and 17 must be blank.

Position 18 (Currency Symbol)

Entry Explanation

Blank A dollar sign (hexadecimal 5B in EBCDIC hexadecimal 24 in
ASCII) is used as the currency symbol in editing (edit words
and edit codes).

Currency Symbol Any character except zero (0), asterisk (*), comma (,),
period (.), ampersand (&), minus sign (-), the letter C, or the
letter R may be specified as the currency symbol.

The specification of a currency symbol does not affect the user-defined edit codes
5 through 9.

Position 19 (Date Format)

The entry in this position specifies the format of the RPG/400 user dates.

Entry Explanation

Blank Defaults to month/day/year if position 21 is blank. Defaults to
day/month/year if position 21 contains a D, |, or J.

M Month/day/year.

D Day/month/year.

Y Year/month/day.

Position 20 (Date Edit)

Entry Explanation

Ampersand (&) Blank is used as the separator character

Any nonblank character The character entered is used as a separator char-
acter

Blank The separator character follows the specification in
position 21.

The entry in this position specifies the separator character to be used with the Y
edit code.

Position 21 (Decimal Notation)

82

RPG/400 Reference

The entry in this position specifies the notation for the user date. It also specifies
the decimal notation and the separator used for numeric literals and edit codes.
The term decimal notation refers to the character that separates whole numbers
from decimal fractions. The word separator refers to the character that separates
the hundreds position from the thousands position, the hundred thousands position
from the millions position, and so on. Below is an example of a number using a
period for the decimal notation character and commas for the separator characters.

12,342,343.00

Decimal Notation
Separators

An entry in this position does not affect the edit words.

Entry
Blank

Explanation

Uses a period for the decimal notation, and a comma for the sepa-
rator. If position 19 is blank, uses the month/day/year format for user
date. If position 20 is blank, uses a slash as the separator for the Y
edit code.

Uses a comma for the decimal notation, and a period for the sepa-
rator. If position 19 is blank, uses the day/month/year format for user
date. If position 20 is blank, uses a period as the separator for the Y
edit code.

Uses a comma for the decimal notation, and a period for the sepa-
rator. If position 19 is blank, uses the day/month/year format for user
date. If position 20 is blank, uses a period as the separator for the Y
edit code. When you use edit codes that cause zero balances to be
printed, zero is written to the left of the decimal notation (comma):
0,00. If the number of decimal positions in the field is equal to the
length of the field, the decimal notation (comma) is the leftmost char-
acter printed.

Uses a period for the decimal notation, and a comma for the sepa-
rator. If position 19 is blank, uses the day/month/year format for user
date. If position 20 is blank, uses a slash as the separator for the Y
edit code.

Positions 22-25 (Reserved)

Positions 22 through 25 must be blank.

Entry

Blank

S

Position 26 (Alternate Collating Sequence)

Explanation
Normal collating sequence is used.
Alternate collating sequence is used.

Use position 26 to indicate whether an alternate collating sequence is to be used
for character compare operations or match fields. For more information see “Alter-
nate Collating Sequence” on page 427.

Positions 27-39 (Reserved)

Positions 27 through 39 must be blank.

Entry

Blank

Position 40 (Sign Handling)

Explanation
The sign is always forced on input and output of zoned numeric
fields.

Position 40 must be blank to ensure a consistent + or — sign when data is extracted
or moved from or to numeric input or output fields. When data is moved to
unpacked numeric fields in output records, the valid external signs are forced.

Chapter 4. Control Specifications 83

Position 41 (Forms Alignment)

Entry Explanation
Blank First line is printed only once.
1 First line can be printed repeatedly allowing the operator to adjust

the printer forms.

If the program contains more than one printer file, the entry in position 41 applies to
each printer file that has 1P (first-page) output. This function may also be specified
by the CL command OVRPRTF (Override to Print File) or in the printer device file and
can be affected by the ALIGN option on the STRPRTWTR command.

Use column 41 only when the first output line is written to a printer file.

When forms are first put in the printer, they may not be in the correct position.
Sometimes several lines must be printed to determine the correct position. If you
specify the 1P forms position, the system prints the first line of output and issues a
message. The operator can then line up the forms and select the option from the
message to print the line again or to continue printing. The 1P forms specification
is also valid if the output is spooled. The page counter is not increased until the
forms are positioned correctly.

Position 42 (Reserved)

Position 42 must be blank.

Position 43 (File Translation)

Entry Explanation
Blank No file translation is requested.
F Files are to be translated.

An entry of F indicates that a file translation table is to be used to translate all data
in specified files. For more information on file translation, see “File Translation” on
page 429.

Positions 44-56 (Reserved)

Positions 44 through 56 must be blank.

Position 57 (Transparency Check)

84

RPG/400 Reference

Entry Explanation
Blank No check for transparency.
1 Check for transparency.

If you specify 1 in position 57 of the control specification, the RPG/400 compiler
scans literals and constants for DBCS characters. It does not check hexadecimal
literals. For more information on transparency and DBCS data, see “Where You
Can Use DBCS Data in RPG/400 Programs” on page 435, “Transparent Literals
and Constants” on page 435, and “Additional Considerations for Using DBCS Data”
on page 436.

Positions 58-74 (Reserved)
Positions 58 through 74 must be blank.

Positions 75-80 (Program Identification)
The symbolic name entered in these positions is the name of the program that can
be run. You can override this name with the PGM parameter in the CL command
CRTRPGPGM (Create RPG Program).

If you do not specify a name in positions 75 through 80 of the control specification
or on the CRTRPGPGM command, but the source is from a database file, the member
name is used as the program name. If the source is not from a database file, the
program name defaults to RPGOBJ.

If you specify the program name on the control specification, its maximum length is
6 characters. If you specify the program name in the CRTRPGPGM command, its
maximum length is 10 characters.

Note: Names entered here must follow the RPG/400 symbolic name rules.
Extended names are not allowed. However, the name specified on the CRTRPGPGM
command can follow the extended naming rules.

Chapter 4. Control Specifications 85

86 RPG/400 Reference

File Description Specifications

Chapter 5. File Description Specifications

File description specifications identify each file used by a program. One file-
description specification statement is required for each file in the program.

A maximum of 50 files can be described per program. Only one primary file can be
specified; however, the presence of a primary file is not required.

Only one record-address file is allowed per program. You can specify a maximum
of eight PRINTER files. The maximum number of other file types is limited only by
the maximum number of files allowed for the program.

Program-described files require more entries on the file-description specifications
than externally described files. Many of the entries required for a program-
described file are part of the external description for an externally described file.

Enter the file-description specifications on the RPG/400 Control and File Description
Specifications.

You can specify the following file types:

* Input

e Output

e Update

e Combined (input/output).

You enter file-description specifications on the main file description line. Additional
details can be entered on the continuation lines.

© Copyright IBM Corp. 1994 87

File Description Specifications

Main File Description Line Summary Chart

Table 12 (Page 1 of 4). Main File Description Line Summary Chart

Posi- Name Entry Explanation

tions

6 Form type F Identification for a file-description specification.

7-14 File name A valid Every file must have a unique file name that is defined to the
file 0OS/400 system. The file name can be from 1 to 8 characters
name long, and must begin with an alphabetic character.

15 File type | Input file.

0] Output file.
U Update file.
C Combined (input/output) file.
16 File designation Blank Output file.
P Primary file.
S Secondary file.
R Record address file.
T Array or table file (prerun-time arrays or tables).
Full procedural file.

17 End of file E All records from the file must be processed before the
program can end. Not valid for files processed by a record-
address file.

Blank
If position 17 is blank for all files, all records from all files
must be processed before end-of-program (LR) can occur. If
position 17 is not blank for all files, all records from this file
may or may not be processed before end-of-program occurs
in multifile processing.

18 Sequence A or Match fields are in ascending sequence.
blank

Match fields are in descending sequence.
D
19 File format F Program described file.
E Externally described file.
20-23 Blank
24-27 Record length 1-9999 Specifies the length of logical records contained in a

program-described file. The device record size constraints
may override an excessive record length.

88 RPG/400 Reference

File Description Specifications

Table 12 (Page 2 of 4). Main File Description Line Summary Chart

Posi- Name Entry Explanation
tions
28 Limits processing L Sequential-within-limits processing by a record-address file.

Random or sequential processing. Random and sequential
Blank processing are implied by a combination of positions 16 and
31 of the file-description specifications, and the calculation
operation specified.

29-30 Length of key field or 1-99 Length of the key field or the length of each entry in a record-
record address field address file. Valid for program-described files only. If the file
being defined uses keys for record identification, enter the
number of positions to be occupied by each record key.
Record key length must be specified for indexed files.

Blank These positions must be blank for externally described files.
For program described files, a blank entry indicates that keys
are not used.

31 Record address type Blank ¢ Relative record numbers are used to process the file.
¢ Records are read consecutively.
¢ Record address file contains relative-record numbers.

¢ Keys in record-address-limits file are in same format as
keys in file being processed.

A Character keys (valid only for program described file speci-
fied as indexed file or as record-address-limits file).

Packed keys (valid only for program described files specified
P as indexed file or record-address-limits file).

Key values are used to process this file. Valid only for
K externally described files.

32 File organization Blank Program described file is processed without keys, or file is
externally described.

| Indexed file. Valid only for program described files.

T Record address file that contains relative-record numbers.
Valid only for program-described files.
33-34 Overflow indicator Blank No overflow indicator is used.
0A-0G, Specified overflow indicator conditions the lines to be printed
ov when overflow occurs. Valid only for program described

PRINTER files.

01-99 Set on when a line is printed on the overflow line, or the
overflow line is reached or passed during a space or skip
operation. Valid for both program described and externally
described PRINTER files.

35-38 Key field starting Blank Key fields are not used for this program-described file, or the
location file is externally described.
1-9999 Record position in a program described file in which the key
field begins.

Chapter 5. File Description Specifications 89

File Description Specifications

Table 12 (Page 3 of 4). Main File Description Line Summary Chart

Posi- Name Entry Explanation

tions

39 Extension code Blank No extension or line counter specifications are used.

E Extension specifications further describe the file.

L Line counter specifications further describe the file.

40-46 Device PRINTER The file is a printer file: the printer is used as output device.
DISK The file is a disk file: this device supports sequential and

random read/write functions.

WORKSTN The file is a work station file: input/output is through a display
or ICF file.

SPECIAL The file is a special file: input or output is associated with a
device that is accessed by a user-supplied routine. The
name of the routine must be specified in positions 54 through
59. The file must be a fixed unblocked format.

SEQ The file is a sequentially organized file: the actual device is
specified outside the RPG/400 program.

47-52 Blank

53 Continuation lines Blank This specification is not a continuation line. The following

position explanations apply when position 53 is blank.

K Indicates a continuation line. For an explanation of positions
54-80 when position 53 contains K, see “Continuation Line”
on page 110.

54-59 Routine Name of When SPECIAL is the device entry, the routine named in posi-
user tions 54 through 59 handles the support for the special 1/0
supplied device.
routine

60-65 Blank

66 File addition Blank No additions of records can be made to an input or update

file. For output files, a blank is equivalent to A.

A Add records to a DISK file. Positions 16 through 18 of the
output specifications must contain ADD, or a WRITE operation
code must be used in the calculation specifications.

67-70 Blank

71-72 File condition Blank The file can be used by the program. If it is an input file, it is

opened.

U1-us
The file can be used by the program when the indicator is on;
it is not used when the indicator is off.

uc
Programmer control of first open. If a file is to be opened by
an OPEN operation in the calculation specification, a UC entry
causes the file not to be opened at program initialization. Not
valid for primary, secondary, table, or record address input
files, or for output files conditioned by 1P indicator.

73-74 Blank

90 RPG/400 Reference

File Description Specifications

Table 12 (Page 4 of 4). Main File Description Line Summary Chart

Posi- Name Entry Explanation
tions
75-80 Optional This space is available for comments.

File Description Specification Statement

Position 6 (Form Type)

An F must be entered in this position for file-description specifications.

Positions 7-14 (File Name)

Entry Explanation

A valid file name Every file used in a program must have a unique name.
The file name can be from 1 to 8 characters long, and must
begin in position 7.

Each file used in the program is identified by a unique symbolic name in positions 7
through 14.

The file name specified in positions 7 through 14 must be an existing file name that
has been defined to the 0OS/400 system, or one of the OS/400 system override
commands must be used to associate the RPG/400 file name to the file name
defined to the OS/400 system. For an externally-described file, the file must exist
at both compilation time and at run time. For a program-described file, the file
need exist only at run time. The file name specified in these positions, rather than
the device name specified in positions 40 through 46, is used to point to the file.
When the files are opened at run time, they are opened in the reverse order to that
specified in the file-description specifications. The RPG/400 device name defines
the functions that can be processed on the associated file.

You can specify file names in positions 7 through 14 that correspond to predefined
device-file definitions supplied by IBM.

Program Described File
For program-described files, the file name entered in positions 7 through 14 must
also be entered on:

¢ Input specifications if the file is a primary, secondary, or full procedural file

¢ OQutput specifications or an output calculation operation line if the file is an
output, update, or combined file, or if the file is an input file and records are
also being added to the file

e Extension specifications if the file is a table, array, or record address file, or a
file processed by a record-address file

e Calculation specifications if the file name is required for the operation code
specified

¢ Line counter specifications if the device is a printer and default values are to be
overridden.

Chapter 5. File Description Specifications 91

File Description Specifications

Externally Described File

For externally described files, the file name entered in positions 7 through 14 is the
name used to locate the record descriptions for the file. The following rules apply
to externally described files:

¢ Input and output specifications for externally described files are optional. They
are required only if you are adding RPG/400 functions, such as control fields or
record identifying indicators, to the external description retrieved.

e When an external description is retrieved, the record definition can be referred
to by its record format name on the input, output, or calculation specifications.

* A record format name must be a unique symbolic name.

¢ A logical file with two record formats of the same name cannot have the dupli-
cate format names renamed and cannot be externally described. However,
such a file can be accessed if it is program described.

Position 15 (File Type)

92

RPG/400 Reference

Entry Explanation

I Input file

0 Output file

U Update file

C Combined (input/output) file.

Input Files
An input file is one from which a program reads information. It can contain data
records, arrays, or tables, or it can be a record-address file.

Output Files
An output file is a file to which information is written.

Update Files

An update file is an input file whose records can be updated. Updating alters the

data in one or more fields of any record contained in the file and writes that record
back to the same file from which it was read. If records are to be deleted, the file

must be specified as an update file.

Combined Files

A combined file is both an input file and an output file. When a combined file is
processed, the output record contains only the data represented by the fields in the
output record. This differs from an update file, where the output record contains
the input record modified by the fields in the output record.

A combined file is valid for a SPECIAL or WORKSTN file. A combined file is also valid
for a DISK or SEQ file if position 16 contains T (an array or table replacement file).

File Description Specifications

Position 16 (File Designation)

Entry Explanation

Blank Output file

P Primary file

S Secondary file

R Record address file
T Array or table file

F Full procedural file

Primary File

When several files are processed by cycle processing, one must be designated as
the primary file. In multifile processing, processing of the primary file takes preced-
ence. Only one primary file is allowed per program.

Secondary File

When more than one file is used during cycle-controlled programming, secondary
files are input files. The processing of secondary files is determined by the order in
which they are specified in the file-description specifications and on the rules of
multifile logic.

Record Address File

A record-address file is a sequentially organized file used to select records from
another file. Only one file in a program can be specified as a record-address file.
This file is described on the file-description and extension specifications and not on
the input specifications. The file processed by the record-address file must also be
specified on the extension specifications and must be a primary, secondary, or full
procedural file.

You cannot specify a record-address file for the device SPECIAL. You cannot
specify an externally described file as a record-address file; however, you can use
a record-address file to process a program described file or an externally described
file.

A record-address file that contains relative-record numbers must also have a T
specified in position 32 and an F in position 19.

Array or Table File

Array and table files specified by a T in position 16 are loaded at program initializa-
tion time. The array or table file can be input or combined. Leave this entry blank
for array or table output files. You cannot specify SPECIAL as the device for array
and table input files. You cannot specify an externally described file as an array or
table file.

If T is specified in position 16, you can specify C in position 15 for a DISK or SEQ
file. This C allows an array or table file to be read from or written to the same file
(an array or table replacement file). The To and From file names on the extension
specifications must specify this file name.

Chapter 5. File Description Specifications 93

File Description Specifications

Full Procedural File
This entry is used when the input is controlled by calculation operations. File oper-
ation codes such as CHAIN or READ are used to do input functions.

Position 17 (End of File)

Entry Explanation

E All records from the file must be processed before the program can
end. This entry is not valid for files processed by a record-address
file.

Blank If position 17 is blank for all files, all records from all files must be

processed before end of program (LR) can occur. If position 17 is
not blank for all files, all records from this file may or may not be
processed before end of program occurs in multifile processing.

Use position 17 to indicate whether the program can end before all records from
the file are processed. An E in position 17 applies only to input, update, or com-
bined files specified as primary, secondary, or record-address files.

If the records from all primary and secondary files must be processed, position 17
must be blank for all files or must contain E's for all files. For multiple input files,
the end-of-program (LR) condition occurs when all input files for which an E is spec-
ified in position 17 have been processed. If position 17 is blank for all files, the
end-of-program condition occurs when all input files have been processed.

When match fields are specified for two or more files and an E is specified in posi-
tion 17 for one or more files, the LR indicator is set on after:

* The end-of-file condition occurs for the last file with an E specified in position
17.

* The program has processed all the records in other files that match the last
record processed from the primary file.

* The program has processed the records in those files without match fields up
to the next record with nonmatching match fields.

When no file or only one file contains match field specifications, no records of other
files are processed after end of file occurs on all files for which an E is specified in
position 17.

Position 18 (Sequence)

94

RPG/400 Reference

Entry Explanation
A or blank Match fields are in ascending sequence.
D Match fields are in descending sequence.

Position 18 specifies the sequence of input fields used with the match fields specifi-
cation (positions 61 and 62 of the input specifications). Position 18 applies only to
input, update, or combined files used as primary or secondary files. Use positions
61 and 62 of the input specifications to identify the fields containing the sequence
information.

If more than one input file with match fields is specified in the program, a sequence
entry in position 18 can be used to check the sequence of the match fields and to
process the file using the matching record technique. The sequence need only be

File Description Specifications

specified for the first file with match fields specified. If sequence is specified for
other files, the sequence specified must be the same; otherwise, the sequence
specified for the first file is assumed.

If only one input file with match fields is specified in the program, a sequence entry
in position 18 can be used to check fields of that file to ensure that the file is in
sequence. By entering one of the codes M1 through M9 in positions 61 and 62 of
the input specifications, and by entering an A or D in position 18, you specify
sequence checking of these fields.

Sequence checking is required when match fields are used in the records from the
file. When a record from a matching input file is found to be out of sequence, the
RPG/400 exception/error handling routine is given control.

Position 19 (File Format)

Positions 20-23

Positions 24-27

Entry Explanation
F Program described file
E Externally described file

An F in position 19 indicates that the records for the file are described within the
RPG/400 program on input/output specifications.

An E in position 19 indicates that the record descriptions for the file are external to
the RPG/400 source program. The compiler obtains these descriptions at compila-
tion time and includes them in the source program.

An entry is required in position 19.

(Reserved)

Positions 20 through 23 must be blank. (Block length, if allowed, is specified
outside the RPG/400 program.)

(Record Length)

Use positions 24 through 27 to indicate the length of the logical records contained
in a program-described file. The maximum record size that can be specified is
9999; however, record-size constraints of any device may override this value. This
entry must be blank for externally described files.

If the file being defined is a record-address file and the record length specified is 3,
it is assumed that each record in the file consists of a 3-byte binary field for the
relative-record numbers starting at offset 0. If the record length is 4 or greater,
each relative-record number in the record-address file is assumed to be a 4-byte
field starting at offset 1. If the record length is left blank, the actual record length is
retrieved at run time to determine how to handle the record-address file.

If the file opened at run time has a primary record length of 3, then 3-byte relative-
record numbers (one per record) are assumed; otherwise, 4-byte relative-record
numbers are assumed. This support can be used to allow RPG/400 programs to
use System/36 environment SORT files as record-address files.

Chapter 5. File Description Specifications 95

File Description Specifications

Table 13. Valid Combinations for a RAF Table File

Record Length RAF Length Type of Support

Positions 24-27 Positions 29-30

Blank Blank Support determined at run time.
3 3 System/36 support.

>=4 4 Native support.

Position 28 (Limits Processing)

Entry Explanation
L Sequential-within-limits processing by a record-address file
Blank Sequential or random processing

Use position 28 to indicate whether the file is processed by a record-address file
that contains limits records.

A record-address file used for limits processing contains records that consist of
upper and lower limits. Each record contains a set of limits that consists of the
lowest record key and the highest record key from the segment of the file to be
processed. Limits processing can be used for keyed files specified as primary, sec-
ondary, or full procedural files.

The L entry in position 28 is valid only if the file is processed by a record-address
file containing limits records. Random and sequential processing of files is implied
by a combination of positions 16 and 31 of the file-description specifications, and by
the calculation operation specified.

The operation codes SETLL and SETGT can be used to position a file; however, the
use of these operation codes does not require an L in position 28.

For more information on limits processing, refer to the RPG/400 User’s Guide.

Positions 29-30 (Length of Key or Record Address)

Entry Explanation

1-99 The number of positions required for the key field in a program
described file or the length of the entries in the record-address file
(which must be a program-described file).

If the program-described file being defined uses keys for record iden-
tification, enter the number of positions occupied by each record key.
This entry is required for indexed files.

If the keys are packed, the key field length should be the packed
length; this is the number of digits in DDS divided by 2 plus 1 and
ignoring any fractions.

If the file being defined is a record-address file, enter the number of
positions that each entry in the record-address file occupies.

Blank These positions must be blank for externally described files. (The
key length is specified in the external description.) For a program-
described file, a blank entry indicates that keys are not used. Posi-

96 RPG/400 Reference

File Description Specifications

tions 29-30 can also be blank for a record-address file with a b in
positions 24-27 (record length).

Position 31 (Record Address Type)

Entry Explanation

Blank Relative record numbers are used to process the file.
Records are read consecutively.
Record address file contains relative-record humbers.

Keys in record-address-limits file are in the same format as keys in
the file being processed.

A Character keys (valid only for program-described files specified as
indexed files or as a record-address-limits file).

P Packed keys (valid only for program-described files specified as
indexed files or as a record-address-limits file).

K Key values are used to process the file. This entry is valid only for
externally described files.

Blank = Non-keyed Processing

A blank indicates that the file is processed without the use of keys, that the record-
address file contains relative-record numbers (a T in position 32), or that the keys
in a record-address-limits file are in the same format as the keys in the file being
processed.

A file processed without keys can be processed consecutively or randomly by
relative-record number.

Input processing by relative-record number is determined by a blank in position 31
and by the use of the CHAIN, SETLL, or SETGT operation code. Output processing by
relative-record number is determined by a blank in position 31 and by the use of
the RECNO keyword on the file description specifications.

A = Character Keys

The indexed file (I in position 32) defined on this line is processed by character-
record keys. (A numeric field used as the search argument is converted to zoned
decimal before chaining.) The A entry must agree with the data format of the field
identified as the key field (length in positions 29 and 30 and starting position in
positions 35 through 38).

The record-address-limits file (R in position 16) defined on this line contains char-
acter keys. The file being processed by this record address file can have an A, P,
or K in position 31.

P = Packed Keys

The indexed file (I in position 32) defined on this line is processed by packed-
decimal-numeric keys. The P entry must agree with the data format of the field
identified as the key field (length in positions 29 and 30 and starting position in
positions 35 through 38).

Note: The sign of all decimal numeric input fields is forced to F or D. All humeric
result fields specified by calculation specifications also have an F or D sign. There-

Chapter 5. File Description Specifications 97

File Description Specifications

fore, if the sign of the key field in the file is not F or D, a record-not-found error
occurs when you retrieve that file.

The record-address-limits file defined on this line contains record keys in packed
decimal format. The file being processed by this record address file can have an
A, P, or K in position 31.

K = Key

A K entry indicates that the externally described file is processed on the assump-
tion that the access path is built on key values. If the processing is random, key
values are used to identify the records.

If this position is blank for a keyed file, the records are retrieved in arrival
sequence.

For more information on record address type, refer to the RPG/400 User’s Guide.

Position 32 (File Organization)

98

RPG/400 Reference

Entry Explanation

Blank The program-described file is processed without keys, or the file is
externally described.

I Indexed file (valid only for program-described files).

T Record address file that contains relative-record numbers (valid only

for program-described files).

Use position 32 to identify the organization of program described files.

Indexed Files
An indexed file can be processed:

¢ Randomly or sequentially by key

e By a record-address file (sequentially within limits). Position 28 must contain
an L.

Nonkeyed Program-Described File
A program-described file that is processed without keys can be processed:

e Randomly by relative-record numbers, positions 28 and 31 must be blank.
e Entry Sequence, positions 28 and 31 must be blank.
e As a record-address file, position 28 must be blank.

Record Address File

A record-address file (indicated by an R in position 16) that contains relative-record
numbers must be identified by a T in position 32. (A record-address file must be
program described.) Each record retrieved from the file being processed is based
on the relative record number in the record-address file. (Relative record numbers
cannot be used for a record-address-limits file.)

Each relative-record number in the record-address file is a 4-byte binary field;
therefore, each 4-byte unit of a record-address file contains a relative-record
number. A minus one (-1 or hexadecimal FFFFFFFF) relative-record number
value causes the record to be skipped. End of file occurs when all record-address
file records have been processed.

File Description Specifications

For more information on how to handle System/36 Environment record-address
files, see the RPG/400 User’s Guide.

Positions 33-34 (Overflow Indicator)

Entry Explanation

Blank No overflow indicator is used.

0A-0G, 0V Specified overflow indicator conditions the lines to be printed
when overflow occurs.

01-99 Set on when a line is printed on the overflow line, or the over-

flow line is reached or passed during a space or skip operation.
Indicators 0A through 0G, and OV are not valid for externally described files.
Use positions 33 and 34 to specify an overflow indicator to condition which lines in
each PRINTER file will be printed when overflow occurs. This entry is valid only for a
PRINTER device. Overflow only occurs if defined.
Only one overflow indicator can be assigned to a file. If more than one PRINTER file

in a program is assigned an overflow indicator, that indicator must be unique for
each file.

Positions 35-38 (Key Field Starting Location)

Entry Explanation

Blank Key fields are not used for this program-described file, or the file is
externally described.

1-9999 Record position in a program described indexed file in which the key
field begins.

Use positions 35 through 38 to identify the record position in which the key field for
a program described indexed file begins. An entry must be made in these positions
for a program described indexed file. The key field of a record contains the infor-
mation that identifies the record. The key field must be in the same location in all
records in the file. The entry in these positions must be right-adjusted. Leading
zeros can be omitted.

Position 39 (Extension Code)

Entry Explanation

Blank No extension or line-counter specifications are used.
E Extension specifications further describe the file.

L Line counter specifications further describe the file.

Use position 39 to indicate whether the program-described file is further described
on the extension specifications or on the line counter specifications. An E in posi-
tion 39 applies only to array or table files or to record-address files; an L in position
39 applies to files assigned to the PRINTER device.

Positions 40-46 (Device)

Entry Explanation
PRINTER File is a printer file, a file with control characters that can be sent to
a printer.

Chapter 5. File Description Specifications 99

File Description Specifications

DISK File is a disk file. This device supports sequential and random
read/write functions. These files can be accessed on a remote
system by Distributed Data Management (DDM).

WORKSTN File is a workstation file. Input/output is through a display or ICF file.

SPECIAL This is a special file. Input or output is on a device that is accessed
by a user-supplied routine. The name of the routine must be speci-
fied in positions 54 through 59. A parameter list is created for use
with this routine, including an option code parameter and a status
code parameter. See “Special File” on page 431 for more informa-
tion. The file must be a fixed unblocked format.

SEQ File is a sequentially organized file. The actual device is specified in
a CL command or in the file description, which is accessed by the file
name.

Use positions 40 through 46 to specify the RPG/400 device hame to be associated
with the file. On the AS/400 system the file name in positions 7 through 14, rather
than the device name specified in positions 40 through 46, is used to point to the
file. The RPG/400 device name defines the RPG/400 functions that can be done on
the associated file. Certain functions are valid only for a specific RPG/400 device
name, such as the EXFMT operation for WORKSTN. The file name specified in posi-
tions 7 through 14 can be overridden at compilation time or run time, allowing you
to change the input/output device used in the program.

Note that the RPG/400 device names are not the same as the system device
names.

Positions 47-52 (Reserved)
Positions 47 through 52 must be blank.

Position 53 (Continuation Lines)

A K in position 53 indicates a continuation line. See “Continuation Line” on
page 110 for more information.

Positions 54-59 (Routine)

When SPECIAL is the device entry (positions 40 through 46), the routine named in
positions 54 through 59 handles the support for the special I/0O device. The routine
name must be left-adjusted. The name is used by the compiler to produce the
linkage to the routine.

Positions 60-65 (Reserved)
Positions 60 through 65 must be blank.

Position 66 (File Addition)

Position 66 indicates whether records are to be added to a DISK file.

Entry Explanation

Blank No records can be added to an input or update file (I or U in position
15). For an output file (O in position 15), a blank is equivalent to an
A.

100 RPG/400 Reference

File Description Specifications

A Add records to the file. Positions 16 through 18 of the output record
specifications for this file must contain ADD, or the WRITE operation
code must be used in the calculation specifications.

See Table 14 for the relationship between position 15 and position 66 of the file-
description specifications and positions 16 through 18 of the output specifications.

Table 14. Processing Functions for Files

File File
Description Description Output
Specifications Specifications Specifications
Function Position 15 Position 66 Positions 16-18
Create new file? 0] Blank Blank
or
Add records to existing file o A ADD
Process file | Blank Blank
Process file and add records to the | A ADD
existing file
Process file and update the records U Blank Blank
(update or delete)
Process file and add new records to an U A ADD
existing file
Process file and delete an existing U Blank DEL

record from the file

1Within RPG, the term create a new file means to add records to a newly created file. Thus, the first two entries
in this table perform the identical function. Both are listed to show that there are two ways to specify that function.

Positions 67-70 (Reserved)

Positions 67 through 70 must be blank.

Positions 71-72 (File Condition)

Entry Explanation

Blank The file can be used by the program, and, if it is an input file, the file
is opened.

U1-us8 The file can be used by the program when the indicator is on; it is

ignored when the indicator is off.

uc Programmer control of first open. If a file is to be initially opened by
the OPEN operation in the calculation specifications, then a UC entry
causes the file not to be opened at program initialization. This entry
is not valid for input files designated as primary, secondary, table, or
record-address files, or for output files conditioned by the 1P indi-
cator.

Chapter 5. File Description Specifications 101

File Description Specifications

An entry of Ul through U8 in positions 71 and 72 lets the programmer control the
operation of input, output, update, and combined files at run time. If the specified
indicator is on at program initialization, the file is opened. If the indicator is not on,
the file is not opened and is ignored during processing. The Ul through U8 indica-
tors can be set as follows:

e By the OS/400 control language.

¢ When used as a resulting indicator for a calculation operation or as field indica-
tors on the input specifications. Setting the U1l through U8 indicators in this
manner has no effect on file conditioning.

The UC entry is required for programmer control of only the first file opening. If a
file is opened and later is closed by the CLOSE operation, the programmer can
reopen the file (by the OPEN operation) and the UC entry is not required in positions
71 and 72.

Positions 73-74 (Reserved)

Positions 73 and 74 must be blank.

Positions 75-80 (Comments)

Positions 75 to 80 can be used for comments, or left blank. These positions are
not printed contiguously with positions 6-74 on the compiler listing.

File Types and Processing Methods

Table 15 shows the valid entries for positions 28, 31, and 32 of the file-description
specifications for the various file types and processing methods. The methods of
disk file processing include:

¢ Relative-record-number processing
e Consecutive processing

e Sequential-by-key processing

* Random-by-key processing

e Sequential-within-limits processing.

Table 15 (Page 1 of 2). Processing Methods for DISK Files

Access Method Opcode Position 28 Position 31 Position 32 Explanation
Random CHAIN Blank Blank Blank Access by
physical
order of
records
Seq READ Blank Blank | Access by
READE key sequen-
READP tially
REDPE
cycle

102 RPG/400 Reference

File Description Specifications

Table 15 (Page 2 of 2). Processing Methods for DISK Files

Access Method Opcode Position 28 Position 31 Position 32 Explanation
Seq Within Limits READ L AorP | Access by
READE key sequen-
READP tially con-
REDPE trolled by
cycle record-
address-
limits file
Seq READ Blank Blank T Access
READE sequentially
READP restricted to
REDPE RRN
cycle numbers in
RAF file

Random-by-Key Processing

For the random-by-key method of processing, you specify a search argument that
identifies the key of the record to be read in factor 1 of the calculation specifications
for the CHAIN operation. See the section on “Keyed Processing Examples” in
Chapter 7 of the RPG/400 User’s Guide for an example of an externally described
DISK file being processed randomly by key. The specified record can be read from
the file either during detail calculations or during total calculations.

The random-by-key method of processing is valid for a full-procedural file desig-
nated as an input file or an update file.

For an externally described file, position 31 of the file description specifications
must contain K, which indicates that the file is processed according to an access
path that is built on keys. The data description specifications for the file specifies
the field that contains the key value (the key field). Position 32 of the file-
description specifications must be blank.

You must designate a program-described file as an indexed file (I in position 32),
and position 31 of the file-description specifications must contain an A or a P. The
length of the key field is identified in positions 29 and 30 of the file-description
specifications, and the starting location of the key field is identified in positions 35
through 38. Data description specifications must be used to create the access path
for a program-described input file. Refer to the section “Indexed File” in chapter 7
of the RPG/400 User’s Guide.

Figure 24 on page 104 through Figure 27 on page 109 are processing charts for
DISK files.

Chapter 5. File Description Specifications 103

File Description Specifications

File Description Specifications

= File Type Mode of Processing File Addition/Unordered
File Designation ;‘:”g:‘c;; Tjn.::s‘dn::d 2 Extent Exit Number of Tracks
Tnd of File S for DAM for Cylinder Overflow
Record Address Type | Z| Name of
Sequence = gvzeanozfa:(‘:: M N symbolic 2| Label exit Number of Extents
Line Filename . w File_Format 5 addtional Avea |8 evice Device % storage Index Tape Rewind
3 [&[overflow indicator | = = =
o o|g| | || siock | recora HIS oo raal Condition
2 o|g 2| Length | Length NS Starting | 5 u1-Us,
z BB > S gz oontion | % Continuation Lines Z| o —
£ HENEE RIS s H N
X ks Sle s External Record Name K Option Entry < =
Sequentially s 4 sfefr 8 0 a0 e e is e PR o “w n so st se sofe0 o1 o2 62 se osf os] e[en eof 7o) 1 7
I\ ¥
No ADD 02| |F 1P
No ADD 03| |F |
o|4| [F
with ADD or WRITE |°[®] [F
With ADD or WRITE (0|6 |F
0|7 F
0|8 F
No ADD
No ADD 09| |F
1lo| [r
. 111] |F
With ADD or WRITE
With ADD or WRITE |}?] [F
13 F
Randomly or 14 |F
Sequentially 15| |F
No ADD 18] |F
17 F
18 F
With ADD or WRITE |1]9] |F
of [F
F

-

2
2
No ADD 22| |F
2|3 F
2(4| |F
With ADD or WRITE [2[5] [F
2|6 F
Sequentially 27 IF
within Limits 28| |F
(by record e IF 1P LpolyK D/ I|SK
address file) 30| |F e LisPoK D[I[SK
31| |F I|F L K D I|SK
3|2| [F U/ P L K D I[SK
33| |F U S L K D I[SK
3|41 |F U F L K D/ I|SK
35| |F
Output 36| |F
with Keys: a7l g a DSk
With ADD 38| |F [0 D 1|SK
3|9 F
alo| |F
al1| |F
a|2] [F
43| |F
F
3

Figure 24. Processing Chart for Externally Described DISK Files (Processing with Keys)

104 RPG/400 Reference

File Description Specifications

Valid File Operations for Figure 24 on page 104
1. CLOSE, FEOD, FORCE
. WRITE, CLOSE, FEOD, FORCE
. UPDAT, DELET, CLOSE, FEOD, FORCE
. WRITE, UPDAT, DELET, CLOSE, FEOD, FORCE
. READ, READE, READP, REDPE, SETLL, SETGT, CHAIN, OPEN, CLOSE, FEOD

. WRITE, READ, READE, READP, REDPE, SETLL, SETGT, CHAIN, OPEN, CLOSE,
FEOD

7. READ, READE, READP, REDPE, SETLL, SETGT, CHAIN, UPDAT, DELET, OPEN,
CLOSE, FEOD

8. READ, READE, READP, REDPE, SETLL, SETGT, CHAIN, WRITE, UPDAT, DELET,
OPEN, CLOSE, FEOD

9. READ, OPEN, CLOSE, FEQOD
10. UPDAT, CLOSE, FEOD, FORCE
11. READ, UPDAT, OPEN, CLOSE, FEOD
12. WRITE (initial load or extend), OPEN, CLOSE, FEOD
13. WRITE (add records), OPEN, CLOSE, FEOD

o 01 A W N

Note: Shaded positions must be blank. Positions without entries are program
dependent.

Chapter 5. File Description Specifications 105

File Description Specifications

File Description Specifications

F File Type Mode of Processing File Addition/Unordered
Fatent gt | [romber o Tacs
End of File B > for Cylinder Overflow
Record Address Type 3 Z| Name of
Sequence '~ Type of File > symbolic t Label Exit Number of Extents
e Filename " Eme Format 5 2&%‘3‘:‘;:‘02,32 § Device Device § storage Index Tape Rewind
§ o &[overflow indicator < - File
@ olg 2| Block Record NHIS z Condi
B o|e 2| tength | tength | NE :fay,;‘:g‘d s v
In Sequence c 2 8 o E : 2 é Location 3 Continuation Lines ve 1
N s sle| |= -
by Relative 2 Sl fw (2 External Record Name k| option Entry
Record Number |+« s[e]r o o 0w s fufo]s ERENEEE £ R K s s s o7 s ssle0 o s e e o n
o2 |F 1|P|
No ADD 9
No ADD o3| [F 1|S
o4 [F
No ADD
0[5 [F UPp|
No ADD
o6 [F Us
Random or o7 |F
Sequential o8 [F
No ADD ofe| [F 1 SIS TN 3
10| |
11 F
No ADD 12 [r U PSR ERSSIES 3 4
13 F
14 F
15 F
s
By Record 1| |F 1P I|SK
) Q
Address File 17| |F IEN ISK
18| |F 1|FIS; 1| SK|
19 F
2/o| |F U| PR 1| SK|
o
2[1| |F TN I|SK
22| |F U| Fs) I|SK
2|3 F
Output 24 |F
with Keys: 2|5 [F
With ADD and WRITE|2| 6] [F
2[7) |F
2|8 F
2|9 F

Figure 25. Processing Chart for Externally Described DISK Files (Processing without Keys)

Valid File Operations for Figure 25

1. CLOSE, FEOD, FORCE

UPDAT, DELET, CLOSE, FEOD, FORCE

READ, READP, SETLL, SETGT, CHAIN, OPEN, CLOSE, FEOD
READ, READP, SETLL, SETGT, CHAIN, UPDAT, DELET, OPEN, CLOSE, FEOD
READ, OPEN, CLOSE, FEOD

UPDAT, CLOSE, FEOD, FORCE

READ, UPDAT, OPEN, CLOSE, FEOD

WRITE (initial load or extend), OPEN, CLOSE, FEOD
WRITE (add records), OPEN, CLOSE, FEOD

WRITE (initial Toad), OPEN, CLOSE, FEOD

© ©® N o g > w D

=
©

106 RPG/400 Reference

Sequentially

No ADD
No ADD

With ADD or WRITE
With ADD or WRITE

No ADD
No ADD

With ADD or WRITE
With ADD or WRITE

Randomly or
Sequentially
No ADD

With ADD or WRITE

No ADD

With ADD or WRITE

Sequentially
within Limits
(by record

address file)

Output with Keys

With ADD or WRITE

File Description Specifications

Notes:

1. Shaded positions must be blank. Positions without entries are program
dependent.

2. The RECNO option must be specified in positions 54 through 59 for an output file
that uses relative-record numbers. The option can be specified for input/output
files. The RPG/400 compiler places the relative-record number of any retrieved
record in the RECNO field.

File Description Specifications

F File Type Mode of Processing File Addition/Unordered
File_Designation o Bocord extes i 3 oo 1t | [umber of macks
End of File B s for Cylinder Overflow
S Record Address Type | 2| Name of
equence ~ Type of Fie A 2| Label Exit Number of Extents
Filename File F . Organization or [o Device Symbolic o
Line w s e forma; O _Additional Area |3 Device Kl Storage Index Tape Rewind
§ S 2 [overfiow Indicator < = e
& S| | [e | e || RE| e
> ~ [~ N .
= S|o S o 9 e <[z Starting | & Continuation Lines = | oo —
£ =N N5 S 2[R lLocation |3 > S
5 O £ I~ <~ 1<
2 S |[2e |< External Record Name K Option Entry [=
o2| [1P © L
03| [F 1S R DI
ola| [g |
X
ofs| [r 1P p[1
ofe[| 15 & i
o|7| [F |
ofs| | ulp| | [FRS S DI
ol |r uls| [[FNS DI
10| |g
< q
1] |r vlp| | [FR Q]I
3 3
Y2l | ujs| | [FRS \ il
1|3 F
114] |F
1s| [r] SRR D[1Sk
16| [F
1|7 F
18] |F HEANAARSRY R D 1|SK o
19| [F
2|0 F
| 3 QK] XX
2] IF SEELIRN D1k
2|2 F
2|3 F
24 F X NYswsw XX N . Y
U|F ISR RNy REELAN D 1|SK AN
2|5 F
2|6 F
2|7 F
2|8 F
-
29| |F 1[PRs L A D(1SK
3
3jo] |F 1S5 THER D[Sk
31| |F IE LU D/ 1[s]k
32| |F |
3[3| |F UP[s) L A D 1|SK
3
34| [F U|S[s L A D’(1|S|K
als| |F [F[S; L | N D I|s|K
3|6 F
3|7 F
38| |F A AN D 1|S|K
3|9 F
alo] |F O JORIF PSR N EENTIN D I|SK W
4|1 F
4 F
4|3 F
"
F

Figure 26. Processing Chart for Program-Described DISK Files (Processing with Keys)

Chapter 5. File Description Specificatons 107

File Description Specifications

Valid File Operations for Figure 26 on page 107

1. CLOSE, FEOD, FORCE

. WRITE, CLOSE, FEOD, FORCE

. UPDAT, DELET, CLOSE, FEOD, FORCE

. UPDAT, DELET, WRITE, CLOSE, FEOD, FORCE

. READ, READE, READP, REDPE, SETLL, SETGT, CHAIN, OPEN, CLOSE, FEOD

. WRITE, READ, READE, READP, REDPE, SETLL, SETGT, CHAIN, OPEN, CLOSE,
FEOD

7. READ, READE, READP, REDPE, SETLL, SETGT, CHAIN, UPDAT, DELET, OPEN,
CLOSE, FEOD

8. WRITE, UPDAT, DELET, READ, READE, READP, REDPE, SETLL, SETGT, CHAIN,
OPEN, CLOSE, FEOD

9. READ, OPEN, CLOSE, FEOD

10. UPDAT, CLOSE, FEOD, FORCE

11. READ, UPDAT, OPEN, CLOSE, FEOD

12. WRITE (initial load), OPEN, CLOSE, FEOD
13. WRITE (add records), OPEN, CLOSE, FEOD

o 01 A W N

Notes:

1. Shaded positions must be blank. Positions without entries are program
dependent.

2. The entry in position 32 (A or P) depends on the format of the keys in the file.

3. All WRITE and UPDAT operations to a program-described file require a data-
structure name in the result field.

108 RPG/400 Reference

In Sequence
by Relative
Record Number
No ADD

No ADD

No ADD
No ADD
Random or

Sequential
No ADD

No ADD

By Record
Address File

As Record
Address File

Limits records
Relative record
numbers

Table

Output
without Keys
With ADD or WRITE

Figure 27. Processing Chart for Program-Described DISK Files (Processing without Keys)

File Description Specifications

File Description Specifications

File Type Mode of Processing File_Addition/Unordered
F File_Designation o Recorts pevess Fa H foram | | Number of Teack
End of File Record Adcress Type | 2| Name of for Cylinder Overflow
sequence " gzz”i,a:!ﬁ A beves symbolic || Label Exit Number of Extents
Lne Filename . Epwe Format E Addiional Avea |8 Vi Device % storage Index Tape Rewind
g g ook record | |overtiow Indicator| & = File
§ SE g fenn‘;m tength | NE e el 2 5?73&
: 3 g L2 < SR Cocation |5 Continuation Lines . 2| e
o Slefe < External Record Name K Option Entry < =
RS IS AN S v v ERTEETE @ 5w s s a5 s 6 51 5o sofe0 o1 w2 s e esfes
o|2| |k
0|3 F
ol4| [F
o|s| [g
06 F
ol7| [F
0|8 F
ol9| [F
10| |F
11| |f
12| |f
1|3 F
14| [F
1|5 F
1|6 F
1|7 F
1|8 F
19| |F
2|0 F
21 F
2|2 F
2|3 F
204| |F
2|s5| |F
2|6| |F
2|7| |F
2|8 F
2|19 F
3|o| [F
31 F
oz |F XHIER
3] [F JDI[SK
3|4] |F R ~1aDl1|SK

Valid File Operations for Figure 27

1

© ©® N o U~ W N

N =
= o

CLOSE, FEOD, FORCE
UPDAT, DELET, CLOSE, FEOD, FORCE

READ, READP, SETLL, SETGT, CHAIN, OPEN, CLOSE, FEOD
READ, READP, SETLL, SETGT, CHAIN, UPDAT, DELET, OPEN, CLOSE, FEOD

READ, OPEN, CLOSE, FEOD

UPDAT, CLOSE, FEOD, FORCE

READ, UPDAT, OPEN, CLOSE, FEOD

OPEN, CLOSE, FEOD

WRITE (add records), OPEN, CLOSE, FEOD

WRITE (initial load), OPEN, CLOSE, FEOD

WRITE (initial load or extend), OPEN, CLOSE, FEOD

Chapter 5. File Description Specifications

109

Continuation Line

Notes:

1. Shaded positions must be blank. Positions without entries are program
dependent.

2. The RECNO option must be specified in positions 54 through 59 for an output file
that uses relative-record numbers. The option can be specified for input/update
files. The RPG/400 compiler places the relative-record number of any retrieved
record in the RECNO field.

3. All WRITE and UPDAT operations to a program-described file require a data-
structure name in the result field.

Continuation Line

Continuation lines can be specified on the file description specification to provide
additional information about the file being defined. Any number of continuation
lines can be specified. A continuation line is indicated by a K in position 53 (see
Figure 28).

A continuation line can be specified on the main file-description specification line if
the functions use positions 54 through 65 for their definition; however, the keywords
SFILE, RENAME, IGNORE, and PLIST cannot be defined there. To specify the contin-
uation line information on the main file description specification line, enter K in posi-
tion 53 and the valid entries in positions 54 through 67.

Valid entries for continuation lines are given in the two summary charts below.

Specifications—Continuation Line

Figure 28. RPG/400 Control and File Description

Continuation Line Summary Chart

Table 16 (Page 1 of 2). Continuation Line Summary Chart

Posi- Name Entry Explanation

tions

1-2 Page Page Entry assigns a page number to each specification form.
number

3-5 Line Line Entry numbers the specification line.
number

6 Form type F Identification for a file description specification.

7-18 Blank These positions must be blank for a separate continuation

line.

19-28 External These positions are used to specify the external name of the
name of record format that is to be renamed (RENAME) or ignored
record (IGNORE).
format

29-46 Blank These positions must be blank for a separate continuation

line.

110 RPG/400 Reference

Continuation Line

Table 16 (Page 2 of 2). Continuation Line Summary Chart

Posi- Name Entry Explanation

tions

47-52 Record number field Numeric For the SFILE options, these positions must specify the name

for SFILE field of a Relative Record Number (RECNO) field. For other contin-
name uation line options, these positions must be blank.

53 Continuation line K Indicates a continuation line.

54-59, These positions are used together. Positions 54 through 59

60-67 specify the option, while positions 60 through 67 provide
further explanation of the option. See “Continuation Line
Options Summary Chart” on page 111.

68-74 Blank These positions must be blank for a separate continuation
line.

75-80 Optional This space is available for comments.

Continuation Line Options Summary Chart
The valid entries for positions 54 through 67 are:

Table 17 (Page 1

of 4). Continuation Line Options

Option (54-59) Entry (60-67)

Explanation

COMIT Blank This file is specified for commitment control. Use the COMIT and ROLBK
operation codes to group changes to this file so that the changes all
happen together, or do not happen at all.

ID Field name Positions 60-65 contain the left-justified name of a 10-character alphanu-

meric field which need not be further defined. This field contains the
name of the program device that supplied the record processed in the file.
The field is updated each time a record is read from a file. Also, you may
move a program device name into this field to direct an output or device-
specific input operation (other than a READ-by-file-name or an implicit cycle
read) to a different device.

When moving a literal into the field, blank the field first, and use the MOVEL
operation to place the literal left-justified in the field. Initially, the field is
blank. A blank field indicates the requester device. If the requester device
is not acquired for your file, you must not use a blank field.

The ID field is maintained for each call to a program. If you call program
B from within program A, the 1D field for program A is not affected.
Program B uses a separate ID field. When you return to program A, its ID
field has the same value as it had before you called program B. If
program B needs to know which devices are acquired to program A,
program A must pass this information (as a parameter list) when it calls
program B.

When you specify ID but not NUM, the RPG/400 program assumes NUM is
present with a value of 1.

To determine the name of the requester device, you may look in the
appropriate area of the file information data structure. Or, you may
process one of the input or output operations described above with the 1D
field blank. After the operation, the ID field has the name of the requester
device.

Chapter 5. File Description Specificatons 111

Continuation Line

Table 17 (Page 2

of 4). Continuation Line Options

Option (54-59)

Entry (60-67)

Explanation

IGNORE

Blank

This option lets you ignore a record format from an externally described
file. On the continuation line, positions 19 through 28 specify the external
name of the record format to be ignored, and positions 60 through 67
must be blank. The program runs as if the record format did not exist.

IND

Indicator
number

Indicators from 01 to the number specified are saved and restored for
each device attached to a mixed or multiple device file. Before an input
operation, the indicators for the device associated with the previous input
or output operation are saved. After the input operation, the indicators for
the device associated with this current input operation are restored.
Specify a number from 01 through 99, right-justified, in positions 60
through 65. No indicators are saved and restored if IND is not specified or
if the option NUM has the entry 1.

If you specified the keyword INDARA, the number you specify for IND must
be less than any response indicator you use in your DDS. For example, if
you specify INDARA and CF01(55) in your DDS, the maximum value for IND
is 54. IND must not be used with shared files.

When you specify IND but not NUM, the RPG/400 program assumes NUM is
present with a value of 1.

INFDS

Data structure
name

This entry lets you define and name a data structure to contain the
exception/error information. The data structure name is entered in posi-
tions 60 through 65 and left justified. If INFDS is specified for more than
one file, each associated data structure must have a unique name.

INFSR

Subroutine
name

The file exception/error subroutine named (left justified) in positions 60
through 65 may receive control following file exception/errors. The sub-
routine name may be *PSSR, which indicates the user defined program
exception/error subroutine is to be given control for errors on this file.

NUM

Maximum
number of
devices

The number specified must be greater than zero and right-justified in posi-
tions 60 through 65. The lesser of this number and the number of devices
defined for the WORKSTN file on the create-file command is the maximum
number of devices that this file can acquire. With a shared file, the NUM
value is not used to restrict the number of acquired devices.

When you specify ID, IND, or SAVDS but not NUM, the RPG/400 program
assumes NUM is present with a value of 1.

PASS

*NOIND

Specify PASS *NOIND on the file description specification continuation line
for a program described WORKSTN file if you are taking responsibility for
passing indicators on input and output. With PASS *NOIND, the RPG/400
language does not pass indicators to data management on output and
does not receive them on input. Pass indicators by describing them as
fields (in the form *INxx, *IN, or *IN,xx) in the input or output record.
They must be specified in the sequence required by the data description
specifications (DDS). You can use the DDS listing to determine this
seguence.

If you do not specify PASS *NOIND and you use the keyword INDARA in the
DDS for the WORKSTN file, indicators are not passed to data management on
output nor received from data management on input.

112

RPG/400 Reference

Continuation Line

Table 17 (Page 3

of 4). Continuation Line Options

Option (54-59)

Entry (60-67)

Explanation

PLIST

Parameter list
name

This entry is valid only when the device specified in positions 40 through
46 of the main file-description line is SPECIAL. Positions 60 through 65
give the left-justified name of the parameter list to be passed to the special
routine. The parameters identified by this entry are added to the end of
the parameter list passed by the program.

PRTCTL

Data structure
name

The dynamic printer control option is being used. The data structure spec-
ified left-justified in positions 60 through 65 refers to the forms control
information and line count value. The PRTCTL option is valid only for a
program described file. See “PRTCTL Data Structure” on page 114 for a
description of the predefined positions for this data structure.

RECNO

Field name

This entry is optional for disk files to be processed by relative-record
number. A RECNO field must be specified for output files processed by
relative-record number, output files that are referenced by a random WRITE
calculation operation, or output files that are used with ADD on the output
specifications.

RECNO can be specified for input/update files. The relative-record number
of the record retrieved is placed in the field named, left justified, in posi-
tions 60 through 65 for all operations that reposition the file (such as READ,
SETLL, or OPEN). It must be defined as numeric with zero decimal posi-
tions.

The field length must be sufficient to contain the longest record number for
the file. RECNO is valid for DISK files only.

The contents of positions 60 through 65 may be not valid when the
RPG/400 compiler does the blocking and unblocking of records.

RENAME

Record format
name

This entry, which is optional, allows you to rename record formats in an
externally described file. Positions 19 through 28 of the continuation line
specify the external name of the record format that is to be renamed.
Positions 60 through 67 specify the left-justified name of the record as it is
used in the program. The external name is replaced by this hame in the
program.

SAVDS

Data structure
name

Positions 60-65 contain the left-justified name of the data structure saved
and restored for each device. Before an input operation, the data struc-
ture for the device operation is saved. After the input operation, the data
structure for the device associated with this current input operation is
restored. This data structure cannot be a data area data structure, file
information data structure, or program status data structure, and it cannot
contain a compile-time array or prerun-time array.

If SAVDS is not specified, no saving and restoring is done. SAVDS must not
be specified for shared files.

When you specify SAVDS but not NUM, the RPG/400 program assumes NUM is
present with a value of 1.

Chapter 5. File Description Specifications 113

Continuation Line

Table 17 (Page 4

of 4). Continuation Line Options

Option (54-59)

Entry (60-67)

Explanation

SFILE

Record format
name

If the main file-description line contains E in position 19 and WORKSTN in
positions 40 through 46, this option must be used to define any subfiles to
be used in the file. Positions 60 through 67 must specify, left justified the
RPG/400 name of the record format to be processed as a subfile.

Positions 47 through 52 must specify the name of the relative-record
number field for this subfile. The relative-record number of any record
retrieved by a READC or CHAIN operation is placed into the field named in
positions 47 through 52. This field is also used to specify the record
number that RPG/400 uses for a WRITE operation to the subfile or for output
operations that use ADD. The field name specified in positions 47 through
52 must be defined as numeric with zero decimal positions. The field
must have enough positions to contain the largest record number for the
file. (See the SFLSIZ keyword in the DDS Reference.)

Relative record number processing is implicitly defined as part of the SFILE
definition. If multiple subfiles are defined, each subfile requires a separate
continuation line.

Do not use SFILE with SLN.

SLN

Field name

Positions 60-65 contain the left-justified name of a start line number (SLN)
field. The SLN field determines where a record format is written to a
display file. The main file-description line must contain WORKSTN in posi-
tions 40 through 46 and a C or O in positions 15. The data description
specifications for the file must specify the keyword SLNO(*VAR) for one or
more record formats. When you specify SLN on the continuation line, the
SLN field will automatically be defined in the program as a numeric field
with length of 2 and with O decimal positions.

Do not use SLN with SFILE.

PRTCTL Data Structure

Data Structure Positions Subfield Contents

1

2

3-4

5-6

7-9

A one-position character field that contains the
space-before value

A one-position character field that contains the
space-after value

A two-position character field that contains the skip-
before value

A two-position character field that contains the skip-
after value

A three-digit numeric field with zero decimal positions
that contains the current line count value.

The values contained in the first four subfields of the data structure are the same
as those allowed in positions 17 through 22 (space and skip entries) of the output
specifications. If the space and skip entries (positions 17 through 22) of the output
specifications are blank, and if subfields 1 through 4 are also blank, the default is to
space 1 after. If the PRTCTL option is specified, it is used only for the output records
that have blanks in positions 17 through 22. You can control the space and skip
value (subfields 1 through 4) for the PRINTER file by changing the values in these
subfields while the program is running.

114 RPG/400 Reference

Continuation Line

Subfield 5 contains the current line count value. The RPG/400 compiler does not
initialize subfield 5 until after the first output line is printed. The RPG/400 compiler
then changes subfield 5 after each output operation to the file.

Chapter 5. File Description Specificatons 115

Continuation Line

116 RPG/400 Reference

Chapter 6. Extension Specifications

Extension specifications describe all record address files, arrays, and tables. A
maximum of 200 arrays and tables can be used in a program.

The following figure shows the valid positions for arrays, tables, and record address

files.

Extension Specifications

Record Sequence of the Chaining File
E . .
Number of the Chaining Field Number | Number Length 58 Length SE
Table or of of of [z Table or of 2%
9 To Filename Array Name | Entries| Entries Entry @_Sg Array Name Entry §;’ Comments
tine |7 From Filename Rocord | o Aveay SIELE| (anemaing S HEH
g HHH Format) 2 E H
ol1] |E «=Output File Compile-Time Array Alternating Array=ts{ |
o2 | [T1T] VL] LT
03| |E «=Output Fil Prerun-Time Array Alternating Array s
o4 |E HINEREN HERREED Arrays
0ls E Run-Time Array Run-Time Array s
ols| [E Combined | Same Combined EEEEEER RERRERE
o|7| |E le=Array Fil Array File Prerun-Time Array Alternating Arrayssss|
0|8 E
ol9| |E
1jo| |E le=Output File Compile-Time Tabl Alternating Table |
AARE [T HNNEE L
12| |E lem=Table File «=Output Fil Prerun-Time Tabl Alternating Table s
Tables
13 |E
1|4 E
1{5 E «-T‘at‘)le‘ Fjlﬁ T‘al‘)le‘\ F‘il Prerun-Time Tabl Alternating Table sy
Lo [E L] L]
17| |E Record Input or
18| |E «-Address-—»«—Updété-—» Record Address| File
19| |E F‘ile‘ File
2lo] [e || ||
Figure 29. Possible Extension Specifications Entries
Enter these specifications on the RPG/400 Extension Specifications.
Extension Specification Summary Chart
Table 18 (Page 1 of 3). Extension Specifications Summary Chart
Positions Name Entry Explanation
1-2 Page Page Number Entry assigns a page number to each specification.
3-5 Line Line number Entry numbers the specification line.
6 Form type E Identification for an extension specification.
7-10 Blank

© Copyright IBM Corp. 1994

117

Table 18 (Page 2 of 3). Extension Specifications Summary Chart

Positions Name Entry Explanation
11-18 From file name Blank The array or table is loaded at compilation time or by
input or calculation specifications.
Record Name of the record address file.
address file
name
Array or table The array or table file loaded at prerun time.
file name
19-26 To file name Blank The array or table is not written at the end of the
program.
Name of an
input or update File processed with the record address file named in
file containing positions 11 through 18.
data records
Name of an
output or com- File (output or combined) to which an array or table is
bined file to be written.
27-32 Array or table Array or table The name of array or table used in the program.
name name
33-35 Entries per Blank The array is loaded by input or calculation specifica-
record tions.
1-999
Number of array or table entries in each array or table
input record.
36-39 Entries per 1-9999 Maximum number of array or table entries.
array or table
40-42 Length of entry 1-256 Length of each element in the array or table named in
positions 27 through 32.
43 Data format Blank The data for the array or table is in zoned decimal
format or in character format.
P The data for the array or table is in packed decimal
format.
B
The data for the array or table is in binary format.
L
The data for a numeric array or table element has a
preceding (left) plus or minus sign.
R
The data for a numeric array or table element has a
following (right) plus or minus sign.
44 Decimal posi- Blank Character array or table.
tions
0-9 Number of positions to the right of the decimal in
numeric array or table elements.
45 Sequence Blank No particular sequence.
A Ascending sequence.
D Descending sequence.

118 RPG/400 Reference

Table 18 (Page 3 of 3). Extension Specifications Summary Chart

Positions Name Entry Explanation
46-51 Array or table Array or table The name of the table or array used in the program as
name name the alternate format.
52-54 Length of entry 1-256 Length of each element in the array or table named in
positions 46-51.
55 Data format Blank The data for the array or table is in zoned decimal
format or in character format.
P The data for the array or table is in packed decimal
format.
B
The data for the array or table is in binary format.
L
The data for a numeric array or table element has a
preceding (left) plus or minus sign.
R
The data for a numeric array or table element has a
following (right) plus or minus sign.
56 Decimal posi- Blank Character array or table.
tions
Number of positions to the right of the decimal in
0-9 numeric array or table elements.
57 Sequence Blank No particular sequence.
A Ascending sequence.
D Descending sequence.
58-74 Comments Used to document the purpose of each specification
line.
75-80 Optional This space is available for comments.

Extension Specification Statement

Position 6 (Form Type)

An E must appear in position 6 to identify this line as an extension specifications

statement.

Positions 7-10 (Reserved)

Positions 7 through 10 must be blank.

Positions 11-18 (From File Name)

Entry
Blank

Record address file name
Array or table file name

Explanation

The array or table is loaded at compilation time,
or the array is loaded by input or calculation spec-
ifications.

Name of the record address file.

Name of the array or table file loaded at prerun
time.

Chapter 6. Extension Specifications 119

Positions 19-26

120

RPG/400 Reference

Use positions 11 through 18 to hame an array file, table file, or record address file.
File names must begin in position 11. The record address file name must always
be entered in these positions. The file name of every prerun-time array or table
used in the program must be entered in these positions. Leave positions 11
through 18 blank for compile-time arrays or tables and for run-time arrays loaded
with input and/or calculation specifications.

Table 19 on page 121 shows the relationship between positions 11 through 18 and
positions 19 through 26.

When an array or table is loaded at compilation time, it is compiled along with the
source program and included in the program. Such an array or table does not
need to be loaded separately every time the program is run. Only those arrays and
tables that contain constant data should be compiled with the program.

(To File Name)

Entry Explanation

Blank The array or table is not written at end of
program.

Input or update file with data File processed with the record address file
named in positions 11 through 18.

Output or combined file Output file to which an array or table is to be

written, or the same file name (must be a com-
bined table file) specified in positions 11
through 18 if the output array or table is to
replace input in the same file. The file should
be externally described as a physical file.

If a record address file is named in positions 11 through 18, the name of the input
or update file that contains the data records to be processed must be entered in
positions 19 through 26.

If an array or table is to be written, enter the file name of the output or combined
file in positions 19 through 26. This file must also be named in the file description
specifications. An array or table can be written to only one output device. Leave
positions 19 through 26 blank if the array or table is not to be written.

If an array or table is assigned to an output file, it is automatically written if LR is on.
The array or table is written after all other records are written in the format used
when it was entered.

If an array or table is to be written to the same file from which it was read, the
same file name must be entered in positions 11 through 18 and in positions 19
through 26. This file must be specified as a combined file (C in position 15) in the
file description specifications.

Table 19. From and To File Name Entries

Type of File

From File Name
(Positions 11-18)

To File Name (Positions 19-26)

Array or table files
loaded at prerun time

If an array or table
loaded at prerun time is
being defined (positions
27 through 57), enter the
name of the file that con-
tains the array or table.!

If the array or table being defined is being written out
after it is updated, enter the name of the output file or
the combined array file if it is to be written to the same
file that was assigned to it in the file description
specifications. If the array or table is not being
written out, leave these positions blank.

Arrays or tables loaded
at compile time

Blank.

Enter the name of the output file if the array or table is
to be written out at the end of the program.?

Arrays loaded by input or
calculation specifications

Blank.

Blank.

Record address file

Enter the name of the
record address file.!

Enter the name of the file that contains the data
records to be processed by the record address file.!

1These entries must be left-adjusted.

Positions 27-32 (Array or Table Name)

Entry
Array or table name

Explanation
The name of the array or table used in the program.

Use positions 27 through 32 to name the array or table.

Positions 33-35 (Entries per Record)

Entry
Blank
1-999

Explanation

The array is loaded by input or calculation specifications.
Number of array or table entries in each array or table input record.

Use positions 33 through 35 to indicate the exact number of array or table entries
in each array or table input record. The number must end in position 35. Every
array or table input record except the last must contain the number of entries indi-
cated in positions 33 through 35. The last record can contain fewer entries than
indicated, but not more. Comments can be entered on table input records in the
positions following the table entries.

If two arrays or tables are in alternating format in one file, each array or table input
record must contain the corresponding entries from each array or table. The corre-
sponding entries from the two arrays or tables are considered one entry and must

be on the same record.

If positions 27 through 32 contain an array name, the following rules apply to the
use of positions 11 through 18 and 33 through 35:

e For a prerun-time array, positions 11 through 18 must contain a file name and
positions 33 through 35 must have an entry.

e For a compile-time array, positions 11 through 18 must be blank and positions
33 through 35 must have an entry.

e For an run-time array, positions 11 through 18 and positions 33 through 35

must be blank.

121

Chapter 6. Extension Specifications

Positions 36-39 (Entries per Array or Table)

Entry Explanation
1-9999 Maximum number of array or table entries.

Use positions 36 through 39 to indicate the maximum number of entries that can be
contained in the array or table named in positions 27 through 32. This number
applies to one array or table or to two arrays or tables in alternating format. The
number entered must end in position 39.

Because the number of entries for two arrays or tables written in alternating format

must be the same, the number in these positions also gives the number of entries
in the second array or table specified in positions 46 through 51.

Positions 40-42 (Length of Entry)

Entry Explanation
1-256 Length of each element in the array or table named in positions 27
through 32.

If L or R is specified in positions 43 or 55, the length includes the sign position.
If two arrays or tables are entered in alternating format, the specification in posi-

tions 40 through 42 applies to the array or table whose entry appears first in the
record.

Position 43 (Data Format)

Entry Explanation

Blank The data for the array or table (1) is in zoned decimal format, or (2)
is character data, or (3) is loaded through input or calculation specifi-
cations.

P The data for the array or table is in packed decimal format.

B The data for the array or table is in binary format.

L The data for a numeric array or table element has a preceding (left)
plus or minus sign.

R The data for a numeric array or table element has a following (right)

plus or minus sign.
The entry in position 43 specifies the format of the data in the records in the file.

This entry has no effect on the format used for internal processing of the array or
table in the program.

Position 44 (Decimal Positions)

Entry Explanation
Blank Character array or table.
0-9 Number of positions to the right of the decimal in numeric array or

table elements.
Use position 44 to indicate the number of decimal positions in a numeric array or

table element. Position 44 must always have an entry for a numeric array or table.
If the entries in an array or table have no decimal positions, enter a 0.

122 RPG/400 Reference

If two arrays or tables are entered in alternating format, the specification in this
position applies to the array or table containing the entry that appears first on the
record.

Position 45 (Sequence)

Positions 46-57

Entry Explanation

Blank No particular sequence
A Ascending sequence

D Descending sequence.

Use position 45 to describe the sequence (either ascending or descending) of the
data in an array or table loaded at prerun time or compile time.

When an entry is made in position 45, the array or table is checked for the speci-
fied sequence at the time the array or table is loaded with data. If a prerun-time
array or table is out of sequence, control passes to the RPG/400 exception/error
handling routine.

Ascending sequence means that the array or table entries start with the lowest data
entry (according to the collating sequence) and go to the highest. Descending
sequence means that the array or table entries start with the highest data entry and
go to the lowest. Items with equal values are allowed.

If two arrays or tables are entered in alternating format, the entry in position 45
applies to the array or table containing the entry that appears first on the record.

When the LOKUP operation is used to search an array or table for an entry to deter-
mine whether the entry is high or low compared with the search argument, a
sequence must have been specified (A or D) for the array or table. See “LOKUP
(Look Up)” on page 286 for more information.

A run-time array (loaded by input and/or calculation specifications) is not sequence
checked. However, an A or D entry must be specified if a high or low LOKUP opera-
tion is processed. Sequence must be specified if the SORTA operation code is used
with the array.

(Second Array Description)

The fields in positions 46 through 57 have the same significance and require the
same type of entries as the fields with corresponding titles in positions 27 through
32 and 40 through 45.

Positions 46 through 57 can be used to describe a second array:

* For compile-time and prerun-time arrays, the array described in positions 46
through 57 is loaded in alternating format with the array nhamed in positions 27
through 32.

e For run-time arrays, positions 46 through 57 can be used to describe a second
run-time array that is loaded independently of the array named in positions 27
through 32.

See the discussion on positions 27 through 45 for information about correct specifi-
cations. Leave positions 46 through 57 blank for a single array or table.

Chapter 6. Extension Specifications 123

Positions 58-74 (Comments)
Positions 58 through 74 can be used for comments.

Positions 75-80 (Comments)
Positions 75 through 80 can be used for comments, or left blank.

These positions are not printed contiguously with positions 6-74 on the compiler
listing.

124 RPG/400 Reference

Chapter 7. Line Counter Specifications

Line counter specifications can be used for each program described PRINTER file to
indicate the length of the form and the number of lines to print on a page. These
entries are specified on the RPG/400 Extension and Line Counter Specifications.
Line counter specifications may be used for each PRINTER file in your program. If
line counter specifications are used, position 39 of the file description specifications
for the PRINTER device must contain an L.

A form length and an overflow line specified by the OS/400 system override com-
mands override any program specifications. If no override commands are used for
the PRINTER file, the program specification of form length and overflow line is used.
If there are no overrides and no program specifications, the form length and the
overflow line specified in the device file are used.

Line Counter Specification Summary Chart

Table 20. Line Counter Specification Summary Chart

Positions Name Entry Explanation

1-2 Page Page number Entry assigns a page number to each specification.

3-5 Line Line number Entry numbers the specification line.

6 Form type L Identification for a line counter specification.

7-14 File name A valid file File name of the PRINTER file as previously specified on

name file description specification form.

15-17 Lines per page 2-112 The number of printing lines available is 2 through
112.

18-19 Form length FL Indicates that the entry in positions 15 through 17 is
the form length. Positions 18 and 19 must contain FL
if positions 15 through 17 contain an entry.

20-22 Overflow line 2-112 The line number specified is the overflow line.

number

23-24 Overflow line oL Indicates that the preceding entry is the overflow line.
Positions 23 and 24 must contain OL if positions 20
through 22 contain an entry.

25-74 Blank

75-80 Optional This space is available for comments.

© Copyright IBM Corp. 1994

125

Line Counter Specification Statement

Position 6 (Form Type)

An L must be entered in position 6 to identify this line as a line counter specifica-
tions statement.

Positions 7-14 (File Name)

Entry Explanation

A valid file name File name of the program described PRINTER file as previ-
ously defined on the file description specifications. The file
name must begin in position 7.

Positions 15-17 (Lines Per Page)

Entry Explanation
2-112 The number of printing lines available is 2 through 112.

Use positions 15 through 17 to specify the exact number of lines available on the
form or page to be used. The entry must end in position 17. Leading zeros can be
omitted.

Positions 18-19 (Form Length)

Entry Explanation
FL Form length.

Use positions 18 and 19 to indicate that the preceding entry (positions 15 through
17) is the form length. Positions 18 and 19 must contain the entry FL if positions
15 through 17 contain an entry.

Changing the form length does not require recompiling the program. The override
to the compiled value can be specified by an OS/400 system override command.

Positions 20-22 (Overflow Line Number)

Entry Explanation
2-112 The line number specified is the overflow line.

Use positions 20 through 22 to specify the overflow line number. The overflow line
number must be less than or equal to the form length. The entry must end in posi-
tion 22. Leading zeros can be omitted. When the line that is specified as the
overflow line is printed, the overflow indicator turns on. In the OS/400 system,
changing the overflow line does not require recompiling the program. The override
to the compiled value can be specified by an OS/400 system override command.

Positions 23-24 (Overflow Line)

126

RPG/400 Reference

Entry Explanation
oL Overflow line.

Use positions 23 and 24 to indicate that the preceding entry (positions 20 through
22) is the overflow line number. Positions 23 and 24 must contain OL if positions
20 through 22 contain an entry.

Positions 25-74 (Reserved)
Positions 25 through 74 must be blank.

Positions 75-80 (Comments)

Positions 75 through 80 can be used for comments, or left blank. These positions
are not printed contiguously with positions 6-74 on the compiler listing.

Chapter 7. Line Counter Specificatons 127

128 RPG/400 Reference

Chapter 8. Input Specifications

For a program described input file, input specifications describe the types of
records within the file, the sequence of the types of records, the fields within a
record, the data within the field, indicators based on the contents of the fields,
control fields, fields used for matching records, and fields used for sequence
checking. For an externally described file, input specifications are optional and can
be used to add RPG/400 functions to the external description. Input specifications
are also used to describe data structures and named constants. The RPG/400 Input
Specification is shown in Figure 30 on page 130.

As Figure 30 on page 130 shows, for program described files, entries on input
specifications are divided into the following categories:

e Record identification entries (positions 7 through 42), which describe the input
record and its relationship to other records in the file.

» Field description entries (positions 43 through 70), which describe the fields in
the records. Each field is described on a separate line, below its corresponding
record identification entry.

For externally described files, entries on input specifications are divided into the
following categories:

e Record identification entries (positions 7 through 14, and 19 and 20), which
identify the record (the externally described record format) to which RPG/400
functions are to be added.

e Field description entries (positions 21 through 30, 53 through 62, and 65
through 70), which describe the RPG/400 functions to be added to the fields in
the record. Field description entries are written on the lines following the corre-
sponding record identification entries.

For data structures, entries on input specifications are divided into the following
categories:

e Data structure statements (positions 7 through 12, 17 through 30, and 44
through 51), which define data structures.

e Data structure subfield specifications (positions 8, and 21 through 58), which
describe the subfields of the data structures. Data structure subfield specifica-
tions are written on the lines following the data structure statements.

This chapter is organized in the following sequence:

¢ Input specifications summary charts
e Entries for program described files
e Entries for externally described files
» Entries for data structures

e Entries for named constants.

© Copyright IBM Corp. 1994 129

I Subfield Initialization Value
Filename ° Named Constant Value Field
g External Field Name Field Location RPG Indicators
Record Name e Field Name
=3 5
[0} o Record Identification Codes > |- E
0 2 < |o =
S 4 &
= 2 = (338 &
w 1 2 3 From| To s T (23 E
Data B H o el B
3 Structure Name 3 5 3, 5 < Data Structure = Constant 2|29 § Zero
Line | > 3 Position |g| o &| Position | 2| a| §| Position [g]a|8| |3 g Name S |5 E| & |pus Minug or
£ g i S1518| |5| oceurs length |3 R o Blank
2 E 6 5(5|5| |g| nrimes 8 3 (25| &
o/1| |I Program
0(2| |I|<+—+Reco ification Entries S8e S3ves Save S3e iy S8 ¥
o3| |1 EIRRT T T RO PO RoF F ¥ Field Description Entries ¥
0|4 I
o5 |z Externally Files
ol6| [T
07| |1 Record Identification Entries
o8| |T Y S3S Y ¥ I R T R Y TR 0 ST VIS S3ved
ol9| |x Field Description Entries
10| |1 B 5 S3ies S3ves : R YR Sy Yool RORYRER
11| [T Data Structures
1|2| |I Data Structure Statement
1|4| |T Data cture Subfield Specifications
15| |I
16| |T
17| |T Named Co
1ls |z RIERE TR J S3hes S3ivel S3ive Tases e Saies S5V
10| [T [
Figure 30. RPG/400 Input Specifications

Shaded areas must be blank for each specification.

Input Specifications Summary Charts

Program Described Files, Record Identification Entries

Table 21 (Page 1

of 2). Program Described Files, Record Identification Entries Summary Chart

betic charac-
ters

Any two-digit
number

Positions Name Entry Explanation

1-2 Page Page number Entry assigns a page number to each specification.

3-5 Line Line number Entry numbers the specification line.

6 Form type | Identification for an input specification.

7-14 File name A valid file Must be the same file name that appears on the file

name description specifications for the input file.
14-16 Logical AND or OR Enter AND in positions 14 through 16 of the next spec-
relationship ification line if more than three record identification

codes are needed to identify the record. Enter OR in
positions 14 and 15 if two or more record types have
common fields.

15-16 Sequence Any two alpha- The program does not check for special sequence.

The program checks for special sequence within the
group.

130 RPG/400 Reference

Table 21 (Page 2 of 2). Program Described Files, Record Identification Entries Summary Chart

Positions Name Entry Explanation
17 Number Blank The program does not check record types for a special
sequence (positions 15 and 16 have alphabetic
entries).
1
Only one record of this type can be present in the
sequenced group.
N
One or more records of this type can be present in the
sequenced group.
18 Option Blank The record type must be present if sequence checking
is specified.
(0] The record type is optional (it may or may not be
present) if sequence checking is specified.
19-20 Record identi- Blank No indicator is used.
fying indicator
or ** 01-99 General indicator.
L1-L9, or LR Control level indicator used for a record identifying
indicator.
H1-H9
Halt indicator.
U1-U8
External indicator.
RT

*%

Return indicator.

Lookahead field (not an indicator). Lookahead can
only be used with a primary or secondary file.

Use Positions 21 through 41 to enter the record identification codes explained

below:

Table 22 (Page 1 of 2). Program Described Files, Record Identification Codes Summary Chart

Positions Name Entry Explanation

21-24, 28-31, Position Blank No record identification code is present.

35-38

1-9999 The position in the record that contains the record
identification code.

25, 32, 39 Not Blank Record identification code must be present.

N Record identification code must not be present.

26, 33, 40 Code part Entire character.

4 Zone portion of character.
D Digit portion of character.

27, 34, 41 Character Any character Enter the identifying character that is to be compared
to the character in the position specified in the input
record.

42-74 Blank

Chapter 8. Input Specifications 131

Table 22 (Page 2 of 2). Program Described Files, Record Identification Codes Summary Chart

Positions

Name

Entry

Explanation

75-80

Optional

This space is available for comments.

Program Described Files, Field Description Entries

Table 23 (Page 1 of 2). Program Described Files, Field Description Entries Summary Chart

Positions Name Entry Explanation
7-42 Blank
43 Data format Blank The input field is in zoned decimal format or character
format.
P
The input field is in packed decimal format.
B
The input field is in binary format.
L
The numeric input field has a preceding (left) plus or
R minus sign.
The numeric input field has a following (right) plus or
minus sign.
44-47 From 1-9999 Specifies the beginning position of the field in the
record.
48-51 To 1-9999 Specifies the end position of the field in the record.
52 Decimal posi- Blank Character field.
tions
0-9 Number of decimal positions in numeric field.
53-58 Field name Symbolic name Field name, data structure name, subfield name, array
name, array element, PAGE, PAGE1-PAGE7, *IN, or
*INXX.
59-60 Control level Blank This is not a control field. Control level indicators
cannot be used with full procedural files.
L1-L9 This field is a control field.
61-62 Match fields Blank This is not a match field.
M1-M9 This field is a match field. Match fields are valid only

for primary and secondary files.

132 RPG/400 Reference

Table 23 (Page 2

of 2). Program Described Files, Field Description Entries Summary Chart

Positions Name Entry Explanation
63-64 Field record Blank The field is common to all record types.
relation
01-99 General indicators.
L1-L9 Control level indicators.
MR Matching record indicator.
U1-u8 External indicators.
H1-H9 Halt indicators.
RT Return indicator.
65-70 Field indicators Blank No indicator specified.
01-99 Field indicator.
H1-H9 Halt indicator.
U1-u8 External indicators.
RT Return indicator.
71-74 Blank
75-80 Optional This space is available for comments.

Externally Described Files, Record Identification Entries

Table 24 (Page 1

of 2). Externally Described Files, Record Identification Entries Summary Chart

Positions Name Entry Explanation
1-2 Page Page number Entry assigns a page number to each specification
form.

3-5 Line Line number Entry numbers the specification line.

6 Form type | Identification for an input specification.

7-14 Record name Record format The RPG/400 name of the record format. A file name
name cannot be used.

15-18 Sequence Blank These positions must be blank.

Chapter 8. Input Specifications

133

Table 24 (Page 2

of 2). Externally Described Files, Record Identification Entries Summary Chart

Positions Name Entry Explanation
19-20 Record identi- Blank No record identifying indicator.
fying indicators
01-99 General indicator.
L1-L9, LR Control level indicator used for record identifying indi-
cator.
H1-H9
Halt indicator.
U1-U8
External indicator.
RT
Return indicator.
21-41 Record identifi- Blank Record format names are used to determine the
cation code record types used in the program.
42-74 Blank
75-80 Optional This space is available for comments.

Externally Described Files, Field Description Entries

Table 25 (Page 1

of 2). Externally Described Files, Field Description Entries Summary Chart

Positions Name Entry Explanation
7-20 Blank
21-30 External field Field name If a field within a record in an externally described field
name is to be renamed, enter the external name of the field
in these positions.
31-52 Blank
53-58 RPG/400 field Field name The name of the field as it appears in the external
name record description (if 6 characters or less) or the field
name that replaces the externally defined field name in
positions 21 through 30.
59-60 Control level Blank Field is not a control field.
L1-19 This field is a control field.
61-62 Match fields Blank Field is not a match field.
M1-M9 The field is a match field.
63-64 Blank
65-70 Field indicators Blank No indicator specified.
01-99 General indicators.
H1-H9 Halt indicators.
U1-u8 External indicators.
RT Return indicator.

134

RPG/400 Reference

Table 25 (Page 2 of 2). Externally Described Files, Field Description Entries Summary Chart

Positions Name Entry Explanation
71-74 Blank
75-80 Optional This space is available for comments.

Data Structure Statement Specifications

Table 26 (Page 1 of 2). Data Structure Statement Specifications Summary Chart

Positions Name Entry Explanation
1-2 Page Page number Entry assigns a page number to each specification
form.
3-5 Line Line number Entry numbers the specification line.
6 Form type | Identification for an input specification.
7-12 Data structure Blank The name of the data structure being defined may be
name omitted.
Valid data
structure name Enter the name of the data structure being defined.
13-16 Blank
17 External Blank Subfield definitions for this data structure follow this
Description specification.

E Subfield definitions are defined externally. The entry
in positions 7 through 12 references the external defi-
nition.

18 Option Blank Not a program status or data area data structure, or
no data structure initialization.

| Data structure initialization. The entire data structure
is initialized, characters to blank, numerics to zero, at
the beginning of program initialization.

S A program status data structure. Only one data struc-
ture may be designated as the program status data
structure.

U
A data area data structure. RPG/400 retrieves the
external data area (named in positions 7 through 12)
at initialization and rewrites it at the end of the
program. If you put blanks in positions 7 through 12,
the local data area is used.

19-20 Record identi- DS Indicates a data structure.
fying indicator
21-30 External file External name If an externally described data structure is to be
name of data struc- renamed, enter the external file name for the subfield
ture description definitions and enter the name to be used in the
program in positions 7 through 12.
31-43 Blank

Chapter 8. Input Specifications 135

Table 26 (Page 2

of 2). Data Structure Statement Specifications Summary Chart

Positions Name Entry Explanation
44-47 Occurrences Blank This is not a multiple occurrence data structure.
1-9999 Entry indicates the number of occurrences of this mul-
tiple occurrence data structure.
48-51 Data structure Blank Length of the data structure is either the length speci-
length fied on the input field specifications if the data struc-
ture is an input field or the highest To position
specified for a subfield within the data structure if the
data structure is not an input field.
1-9999
Length of the data structure.
52-74 Blank
75-80 Optional This space is available for comments.

136 RPG/400 Reference

Data Structure Subfield Specifications

Table 27. Data Structure Subfield Specifications Summary Chart

Positions Name Entry Explanation
7 Blank
8 Initialization Blank No subfield initialization.
option
| Subfield is initialized to the value specified in positions
21 to 42.
9-20 Blank
21-30 External field Subfield name If a subfield in an externally described data structure is
name to be renamed, enter the external name of the subfield
in these positions.
21-42 Initialization Valid initial field If a subfield is to be initialized, specify a literal value or
value named constant.
31-42 Blank If a subfield in an externally described data structure is
to be renamed to the entry specified in positions 21 to
30, positions 31 to 42 are left blank.
43 Internal data Blank Subfield is in zoned decimal format or character
format format.
P
Subfield is in packed decimal format.
B
Subfield is in binary format.
44-47 From 1-9999 Specifies subfield's beginning position in data struc-
ture.
48-51 To 1-9999 Specifies subfield's end position in data structure.
44-51 Keywords Valid keyword Special keywords define the location of subfields in the
program status data structure or the file information
data structure. Keywords for the program status data
structure are *STATUS, *PROGRAM, *PARMS, and
*ROUTINE. Keywords for the file information data struc-
ture are *FILE, *RECORD, *OPCODE, *STATUS, and
*ROUTINE.
52 Decimal posi- Blank Character subfield.
tions
0-9 Number of decimal positions in a numeric subfield.
53-58 Subfield name Valid subfield The subfield name or the external name of the subfield
name or the subfield name that replaces the external subfield
name specified in positions 21 through 30.
59-74 Blank
75-80 Optional This space is available for comments.

Chapter 8. Input Specifications 137

Named Constant

Table 28. Named Constant Specifications Summary Chart

Positions Name Entry Explanation

1-5 Blank

6 Form type | Identification for an input specification.

7-20 Blank

21-42 Constant Constant Any valid RPG/400 literal including transparent literals.
The character constants may be continued on the next
line if needed by coding a hyphen instead of a single
guote as the last character.

43 Data type C Indicates type of nhame is constant.

Blank Continuation line

44-52 Blank

53-58 Constant name Name Name of constant. The normal rules for RPG/400
names apply. Reserved words cannot be used.

59-74 Blank

Named Constant Continuation

Table 29. Named Constant Continuation Specifications Summary Chart

Positions Name Entry Explanation

1-5 Blank

6 Form type | Identification for an input specification.

7-20 Blank

21-42 Constant Constant Any valid RPG/400 literal including transparent literals.
43-74 Blank

Program Described Files

Position 6 (Form Type)

An | must appear in position 6 to identify this line as an input specification state-

ment.

Record Identification Entries

Record identification entries (positions 7 through 42) for a program described file
describe the input record and its relationship to other records in the file.

138 RPG/400 Reference

Positions 7-14 (File Name)

Entry Explanation
A valid file name Same file name that appears on the file description specifi-
cations for the input file.

Enter the name of the file to be described in these positions. This name must be
the same name defined for the file on the file description specifications. This file
must be an input file, an update file, or a combined file. The file name must be
entered on the first record identification line for each file and can be entered on
subsequent record identification lines for that file. All entries describing one input
file must appear together; they cannot be mixed with entries for other files.

Positions 14-16 (Logical Relationship)

Entry Explanation
AND More than three identification codes are used.
OR Two or more record types have common fields.

An unlimited number of AND/OR lines can be used. For more information see “AND
Relationship” on page 144 and “OR Relationship” on page 144.

Positions 15-16 (Sequence)

Entry Explanation

Any two alphabetic characters The program does not check for special
sequence.

Any two-digit number The program checks for special sequence

within the group.

The numeric sequence entry combined with the number (position 17) and option
(position 18) entries causes the program to check the sequence of input records
within a file. If the sequence is not correct, control passes to the RPG/400
exception/error handling routine. If AND or OR lines are specified, the sequence
entry is made on the main record line of the group, not on the AND or OR lines.

Alphabetic and numeric entries can be made for different records (different record
identification lines) in the same file, but records with alphabetic entries must be
specified before records with numeric entries.

Alphabetic Entries

Enter any two alphabetic characters in these positions when no sequence checking
is to be done. It is common programming practice to specify these codes in a
sequence that aids in program documentation. However, it is not necessary to use
unigue alphabetic entries.

Numeric Entries

Enter a unique numeric code in positions 15 and 16 if one record type must be
read before another record type in a file. Numeric entries must be in ascending
order, starting with 01, but need not be consecutive. When a numeric entry is
used, the appropriate entries must be made in positions 17 and 18.

To specify sequence checking, each record type must have a record identification
code, and the record types must be numbered in the order in which they should

Chapter 8. Input Specifications 139

appear. This order is checked as the records are read. If a record type is out of
sequence, control passes to the RPG/400 exception/error handling routine.

Sequence numbers ensure only that all records of each record type precede the
records of senior sequence numbered record types. The sequence numbers do not
ensure that records within a record type are in any certain order. Sequence
numbers are unrelated to control levels and do not provide for checking data in
fields of a record for a special sequence. Use positions 61 and 62 (matching fields)
to indicate that data in fields of a record should be checked for a special sequence.

Position 17 (Number)

Entry Explanation

Blank The program does not check record types for a special sequence
(positions 15 and 16 have alphabetic entries).

1 Only one record of this type can be present in the sequenced group.

N One or more records of this type can be present in the sequenced
group.

This entry must be used when a numeric entry is made in positions 15 and 16. If
an alphabetic entry is made in positions 15 and 16, this entry must be blank.

Position 18 (Option)

Positions 19-20

140

RPG/400 Reference

Entry Explanation
Blank The record type must be present if sequence checking is specified.
0] The record type is optional (that is, it may or may not be present) if

sequence checking is specified.
This entry must be blank if positions 15 and 16 contain an alphabetic entry.
Sequence checking of record types has no meaning when all record types within a

file are specified as optional (alphabetic entry in positions 15 and 16 or O entry in
position 18).

(Record Identifying Indicator, or **)

Entry Explanation

Blank No indicator is used.

01-99 General indicator.

L1-L9 or LR Control level indicator used for a record identifying indicator.
H1-H9 Halt indicator.

ui-u8 External indicator.

RT Return indicator.

*x Lookahead field (not an indicator). Lookahead can be used only

with a primary or secondary file.

The indicators specified in these positions are used in conjunction with the record
identification codes (positions 21 through 41).

Indicators

Positions 19 and 20 associate an indicator with the record type defined on this line.
The normal entry is one of the indicators 01 to 99; however, the control level indica-
tors L1 through L9 and LR can be used to cause certain total steps to be proc-
essed. If a control level indicator is specified, lower control level indicators are not
set on. The halt indicators H1 through H9 can be used to stop processing. The
return indicator (RT) is used to return to the calling program.

When a record is selected for processing and satisfies the conditions indicated by
the record identification codes, the appropriate record identifying indicator is set on.
This indicator can be used to condition calculation and output operations. Record
identifying indicators can be set on or set off by the programmer. However, at the
end of the cycle, all record identifying indicators are set off before another record is
selected.

Lookahead Fields

The entry of ** is used for the lookahead function. This function lets you look at
information in the next record in a file. You can look not only at the file currently
selected for processing but also at other files present but not selected during this
cycle.

Field description lines must contain From and To entries in the record, a field
name, and decimal positions if the field is numeric. Note that a lookahead field
may not be specified as a field name or as a data structure name on Input Specifi-
cations or as a Result Field on Calculation Specifications.

Positions 15 and 16 must contain an alphabetic entry. The lookahead fields are
defined in positions 53 through 58 of the lines following the line containing ** in
positions 19 and 20. Positions 59 through 74 must be blank.

Any or all of the fields in a record can be defined as lookahead fields. This defi-
nition applies to all records in the file, regardless of their type. If a field is used both
as a lookahead field and as a normal input field, it must be defined twice with dif-
ferent names.

The lookahead function can be specified only for primary and secondary files and
can be specified only once for a file. It cannot be used for full procedural files
(identified by an F in position 16 of the file description specifications), or with AND or
OR lines.

When a record is being processed from a combined file or an update file, the data
in the lookahead field is the same as the data in the record being processed, not
the data in the next record.

The lookahead function causes information in the file information data structure to
be updated with data pertaining to the lookahead record, not to the current primary
record.

If an array element is specified as a lookahead field, the entire array is classified as
a lookahead field.

Lookahead fields are filled with nines when all records in the file have been proc-
essed so that the end of the file can be recognized.

Chapter 8. Input Specifications 141

Positions 21-41 (Record Identification Codes)

142

Entries in positions 21 through 41 identify each record type in the input file. One to
three identification codes can be entered on each specification line. More than
three record identification codes can be specified on additional lines with the AND/OR
relationship. If the file contains only one record type, the identification codes can
be left blank; however, a record identifying indicator entry (positions 19 and 20) and
a sequence entry (positions 15 and 16) must be made.

Three sets of entries can be made in positions 21 through 41: 21 through 27, 28
through 34, and 35 through 41. Each set is divided into four groups: position, not,
code part, and character.

The following table shows which categories use which positions in each set.

Category 21-27 28-34 35-41
Position 21-24 28-31 35-38
Not 25 32 39
Code Part 26 33 40
Character 27 34 41

Entries in these sets need not be in sequence. For example, an entry can be
made in positions 28 through 34 without requiring an entry in positions 21 through
27. Entries for record identification codes are not necessary if input records within
a file are of the same type. An input specification containing no record identifica-
tion code defines the last record type for the file, thus allowing the handling of any
record types that are undefined. If no record identification codes are satisfied,
control passes to the RPG/400 exception/error handling routine.

Positions 21-24, 28-31, and 35-38 (Position)

Entry Explanation
Blank No record identification code is present.
1-9999 The position that contains the record identification code in the record.

In these positions enter the position that contains the record identification code in
each record. The position containing the code must be within the record length
specified for the file. This entry must be right-adjusted, but leading zeros can be
omitted.

Positions 25, 32, and 39 (Not)

Entry Explanation
Blank Record identification code must be present.
N Record identification code must not be present.

Enter an N in this position if the code described must not be present in the speci-
fied record position.

RPG/400 Reference

Positions 26, 33, and 40 (Code Part)

Entry Explanation

C Entire character

VA Zone portion of character
D Digit portion of character.

This entry specifies what part of the character in the record identification code is to
be tested.

Character (C): The C entry indicates that the complete structure (zone and digit)
of the character is to be tested.

Zone (Z): The Z entry indicates that the zone portion of the character is to be
tested. The zone entry causes the four high-order bits of the character entry (posi-
tion 27) to be compared with the zone portion of the character in the record position
specified in the position entry (positions 21 through 24). The following three special
cases are exceptions:

* The hexadecimal representation of an & (ampersand) is 50. However, when an
ampersand is coded in the character entry, it is treated as if its hexadecimal
representation were C0, that is, as if it had the same zone as A through I. An
ampersand in the input data satisfies two zone checks: one for a hexadecimal
5 zone, the other for a hexadecimal C zone.

e The hexadecimal representation of a - (minus sign) is 60. However, when a
minus sign is coded in the character entry, it is treated as if its hexadecimal
representation were DO, that is, as if it had the same zone as J through R. A
minus sign in the input data satisfies two zone checks: one for a hexadecimal 6
zone, the other for a hexadecimal D zone.

¢ The hexadecimal representation of a blank is 40. However, when a blank is
coded in the character entry, it is treated as if its hexadecimal representation
were F0, that is, as if it had the same zone as 0 through 9. A blank in the input
data satisfies two zone checks: one for a hexadecimal 4 zone, the other for a
hexadecimal F zone.

Digit (D): The D entry indicates that the digit portion of the character is to be
tested. The four low-order bits of the character are compared with the character
specified by the position entry.

Positions 27, 34, and 41 (Character)
In this position enter the identifying character that is to be compared with the char-
acter in the position specified in the input record.

The check for record type always starts with the first record type specified. If data
in a record satisfies more than one set of record identification codes, the first record
type satisfied determines the record types.

When more than one record type is specified for a file, the record identification
codes should be coded so that each input record has a unique set of identification
codes.

Chapter 8. Input Specifications 143

AND Relationship
The AND relationship is used when more than three record identification codes iden-
tify a record.

To use the AND relationship, enter at least one record identification code on the first
line and enter the remaining record identification codes on the following lines with
AND coded in positions 14 through 16 for each additional line used. Positions 7
through 13, 17 through 20, and 42 through 74 of each line with AND in positions 14
through 16 must be blank. Sequence, and record-identifying-indicator entries are
made in the first line of the group and cannot be specified in the additional lines.

An unlimited number of AND/OR lines can be used on the input specifications.

OR Relationship
The OR relationship is used when two or more record types have common fields.

To use the OR relationship, enter OR in positions 14 and 15. Positions 7 through 13,
16 through 18, and 42 through 74 must be blank. A record identifying indicator can
be entered in positions 19 and 20. If the indicator entry is made and the record
identification codes on the OR line are satisfied, the indicator specified in positions
19 and 20 on that line is set on. If no indicator entry is made, the indicator on the
preceding line is set on.

An unlimited number of AND/OR lines can be used on the input specifications.

Position 42 (Reserved)
Position 42 must be blank.

Field Description Entries

The field description entries (positions 43 through 74) must follow the record iden-
tification entries (positions 7 through 42) for each file.

Position 43 (Data Format)

Entry Explanation

Blank The input field is in zoned decimal format or is a character field.
P The input field is in packed decimal format.

B The input field is in binary format.

L The numeric input field has a preceding (left) plus or minus sign.
R The number input field has a following (right) plus or minus sign.

The entry in position 43 specifies the format of the data in the records in the file.
This entry has no effect on the format used for internal processing of the input field
in the program.

See Chapter 9 in the RPG/400 User’s Guide for information on internal field
formats.

144 RPG/400 Reference

Positions 44-51 (Field Location)

Entry Explanation
Two 1- to 4-digit numbers Beginning of a field (from) and end of a field (to).

This entry describes the location and size of each field in the input record. Posi-
tions 44 through 47 specify the location of the field's beginning position; positions
48 through 51 specify the location of the field's end position. To define a single-
position field, enter the same number in positions 44 through 47 and in positions 48
through 51. Numeric entries must be right-adjusted; leading zeros can be omitted.

The maximum number of positions in the input record for each type of field is as

follows:

Number of Positions Type of Field

30 Zoned decimal numeric (30 digits)

16 Packed numeric (30 digits)

4 Binary (9 digits)

256 Character (256 characters)

31 Numeric with leading or trailing sign (30 digits)
9999 Data structure.

For arrays, enter the beginning position of the array in positions 44 through 47 and
the ending position in positions 48 through 51. The array length must be an inte-
gral multiple of the length of an element. The From-To position does not have to
account for all the elements in the array. The placement of data into the array starts
with the first element.

Position 52 (Decimal Positions)

Entry Explanation
Blank Character field
0-9 Number of decimal positions in numeric field.

This entry, used with the data format entry in position 43, describes the format of
the field. This entry indicates whether the field described on this line is a character
field or a numeric field. If the field is numeric, an entry must be made. The
number of decimal positions specified for a numeric field cannot exceed the length
of the field. For an array or an array element, this entry must be the same as the
entry made on the extension specifications (position 44 or 56) for the array. (If this
entry is blank for a numeric array or array element, the decimal positions specified
in the extension specification are used.)

Positions 53-58 (Field Name)

Entry Explanation

Symbolic name Field name, data structure name, data structure subfield name,
array name, array element, PAGE, PAGE1-PAGE7, *IN, *INxX,
or *IN,xx.

These positions name the fields of an input record that are used in an RPG/400
program. This name must follow the rules for symbolic names.

To refer to an entire array on the input specifications, enter the array name in posi-
tions 53 through 58. If an array name is entered in positions 53 through 58, control

Chapter 8. Input Specifications 145

level (positions 59 and 60), matching fields (positions 61 and 62), and field indica-
tors (positions 65 through 70) must be blank.

To refer to an element of an array, specify the array name, followed by a comma,
followed by an index. The index is either a numeric field with zero decimal posi-
tions or the actual number of the array element to be used. The value of the index
can vary from 1 to n, where n is the number of elements within the array.

Positions 59-60 (Control Level)

Entry Explanation

Blank This field is not a control field. Control level indicators cannot be
used with full procedural files.

L1-L9 This field is a control field.

Positions 59 and 60 indicate the fields that are used as control fields. A change in
the contents of a control field causes all operations conditioned by that control level
indicator and by all lower level indicators to be processed.

A split control field is a control field that is made up of more than one field, each
having the same control level indicator. The first field specified with that control
level indicator is placed in the high-order position of the split control field, and the
last field specified with the same control level indicator is placed in the low-order
position of the split control field.

Positions 61-62 (Matching Fields)

146

RPG/400 Reference

Entry Explanation
Blank This field is not a match field.
M1-M9 This field is a match field.

This entry is used to match the records of one file with those of another or to
sequence check match fields within one file. Match fields can be specified only for
fields in primary and secondary files.

Match fields within a record are designated by an M1 through M9 code entered in
positions 61 and 62 of the appropriate field description specification line. A
maximum of nine match fields can be specified.

The match field codes M1 through M9 can be assigned in any sequence. For
example, M3 can be defined on the line before M1, or M1 need not be defined at all.

When more than one match field code is used for a record, all fields can be consid-
ered as one large field. M1 or the lowest code used is the rightmost or low-order
position of the field. M9 or the highest code used is the leftmost or high-order posi-
tion of the field.

Entries in position 26 (alternate collating sequence) and position 43 (file translation)
of the control specification can be used to alter the collating sequence for match
fields.

If match fields are specified for only a single sequential file (input, update, or com-
bined), match fields within the file are sequence checked. The MR indicator is not
set on and cannot be used in the program. An out-of-sequence record causes the
RPG/400 exception/error handling routine to be given control.

In addition to sequence checking, match fields are used to match records from the
primary file with those from secondary files.

Positions 63-64 (Field Record Relation)

Entry Explanation

Blank The field is common to all record types.
01-99 General indicators.

L1-L9 Control level indicators.

MR Matching record indicator.

u1-us External indicators.

H1-H9 Halt indicators.

RT Return indicator.

Field record relation indicators are used to associate fields within a particular record
type when that record type is one of several in an OR relationship. This entry
reduces the number of lines that must be written.

The field described on a line is extracted from the record by the RPG/400 program
only when the indicator coded in positions 63 and 64 is on or when positions 63
and 64 are blank. When positions 63 and 64 are blank, the field is common to all
record types defined by the OR relationship.

Field record relation indicators can be used with control level fields (positions 59
and 60) and matching fields (positions 61 and 62).

Positions 65-70 (Field Indicators)

Entry Explanation

Blank No indicator specified
01-99 General indicators
H1-H9 Halt indicator

u1-us External indicators

RT Return indicator.

Entries in positions 65 through 70 test the status of a field or of an array element
as it is read into the program. Field indicators are specified on the same line as
the field to be tested. Depending on the status of the field (plus, minus, zero, or
blank), the appropriate indicator is set on and can be used to condition later specifi-
cations. The same indicator can be specified in two positions, but it should not be
used for all three positions. Field indicators cannot be used with arrays that are not
indexed or look-ahead fields.

Positions 65 and 66 (plus) and positions 67 and 68 (minus) are valid for numeric
fields only. Positions 69 and 70 can be used to test a numeric field for zeros or a
character field for blanks.

The field indicators are set on if the field or array element meets the condition
specified when the record is read. Each field indicator is related to only one record
type; therefore, the indicators are not reset (on or off) until the related record is
read again or until the indicator is defined in some other specification.

Chapter 8. Input Specifications 147

Positions 71-74 (Reserved)

Positions 71 through 74 must be blank.

Positions 75-80 (Comments)

Positions 75 through 80 can be used for comments, or left blank. These positions
are not printed contiguously with positions 6-74 on the compiler listing.

Externally Described Files

Position 6 (Form Type)

An | must appear in position 6 to identify this line as an input specifications state-
ment.

Record Identification Entries

When the description of an externally described file is retrieved by the compiler, the
record definitions are also retrieved. To refer to the record definitions, specify the
record format name in the input, calculation, and output specifications of the
program. Input specifications for an externally described file are required if:

e Record identifying indicators are to be specified.

¢ A field within a record is to be renamed for the program.
e Control level or matching field indicators are to be used.
* Field indicators are to be used.

The field description specifications must immediately follow the record identification
specification for an externally described file.

A record line for an externally described file defines the beginning of the override
specifications for the record. All specifications following the record line are part of
the record override until another record format name or file name is found in posi-
tions 7 through 14 of the input specifications. All record lines that pertain to an
externally described file must appear together; they cannot be mixed with entries
for other files.

Positions 7-14 (Record Name)

148

RPG/400 Reference

Enter one of the following:

e The external name of the record format. (The file name cannot be used for an
externally described file.)

¢ The RPG/400 name specified by the RENAME option on the file description specifi-
cations continuation line if the external record format was renamed. A record
format name can appear only once in positions 7 through 14 of the input spec-
ifications for a program.

Positions 15-18 (Reserved)
Positions 15 through 18 must be blank.

Positions 19-20 (Record Identifying Indicator)

The specification of record identifying indicators in these positions is optional but, if
present, follows the rules as described under “Program Described Files” on

page 138earlier in this chapter, except for look-ahead specifications, which are not
allowed for an externally described file.

Positions 21-41 (Record Identification Code)

Positions 21 through 41 must be blank. Record format nhames are used to deter-
mine the record types used in an externally described file.

Positions 42-74 (Reserved)

Positions 42-74 must be blank.

Positions 75-80 (Comments)

Positions 75-80 can be used for comments, or left blank. These positions are not
printed contiguously with positions 6-74 on the compiler listing.

Field Description Entries

The field description specifications for an externally described file can be used to
rename a field within a record for a program or to specify control level, field indi-
cator, and match field functions. The field definitions (attributes) are retrieved from
the externally described file and cannot be changed by the program. If the attri-
butes of a field are not valid to an RPG/400 program (such as numeric length
greater than 30 digits), the field cannot be used. Diagnostic checking is done on
fields contained in an external record format in the same way as for source state-
ments.

Positions 7-20 (Reserved)
Positions 7 through 20 must be blank.

Positions 21-30 (External Field Name)

If a field within a record in an externally described file is to be renamed, enter the
external name of the field in these positions. A field may have to be renamed
because the external name is longer than 6 characters or because the name is the
same as a field name specified in the program and two different names are
required.

Positions 31-52 (Reserved)
Positions 31 through 52 must be blank.

Chapter 8. Input Specifications 149

Positions 53-58 (Field Name)

The field name entry is made only when it is required for the RPG/400 function
(such as control levels) added to the external description. The field name entry
contains one of the following:

e The name of the field as defined in the external record description (if 6 charac-
ters or less).

¢ The name specified to be used in the program that replaced the external name
specified in positions 21 through 30.

The field name must follow the rules for using symbolic hames.

Positions 59-60 (Control Level)

This entry indicates whether the field is to be used as a control field in the program.

Entry Explanation
Blank This field is not a control field.
L1-L9 This field is a control field.

Note: For externally described files, split control fields are combined in the order
in which the fields are specified on the data description specifications (DDS), not in
the order in which the fields are specified on the input specifications.

Positions 61-62 (Matching Fields)

Positions 63-64

This entry indicates whether the field is to be used as a match field.

Entry Explanation
Blank This field is not a match field.
M1-M9 This field is a match field.

See “Positions 61-62 (Matching Fields)” on page 146 for more information on
match fields.

(Reserved)
Positions 63 and 64 must be blank.

Positions 65-70 (Field Indicators)

Entry Explanation

Blank No indicator specified
01-99 General indicators
H1-H9 Halt indicators

Ul-u8 External indicators

RT Return indicator.

See “Positions 65-70 (Field Indicators)” on page 147 for more information.

Positions 71-74 (Reserved)

150

RPG/400 Reference

Positions 71 through 74 must be blank.

Positions 75-80 (Comments)

Positions 75 through 80 can be used for comments, or left blank. These positions
are not printed contiguously with positions 6-74 on the compiler listing.

Data Structure Specifications
A data structure can be used to:

¢ Allow the division of a field into subfields without using the MOVE or MOVEL oper-
ations.

e Operate on a subfield and change the contents of a subfield.

* Redefine the same internal area more than once using different data formats.

Data structures are defined on the input specifications the same way records are
defined. The record specification line contains the data structure statement (DS in
positions 19 and 20) and the data structure name (optional). The field specification
lines contain the subfield specifications for the data structure.

Data structure specifications must follow the input specifications for records. All
entries describing a data structure and its subfields must appear together.

Data Structure Specification Entries

Position 6 (Form Type)

Position 6 must contain an | for input specifications.

Positions 7-12 (Data Structure Name)

Positions 7 through 12 can contain the name of the data structure being defined.
The data structure name is optional, and is limited to 6 characters. A data structure
name must follow the rules for using symbolic names. A data structure name can
be specified anywhere a character field can be specified. If the data structure is
externally described and positions 21-30 are blank, this entry must contain the
name of an externally described file.

Positions 13-16 (Reserved)
Positions 13 through 16 must be blank.

Position 17 (External Description)

Entry Explanation
Blank Subfield definitions for this data structure follow this specification.
E Subfield definitions are described externally. Positions 7 through 12

must contain the name of an externally described file if positions 21
through 30 are blank. The file name must be limited to 6 characters.

Chapter 8. Input Specifications 151

Position 18 (Option)

Entry Explanation

Blank This data structure is not a program status or data area data struc-
ture, and this data structure is not globally initialized.

I Data structure initialization. All subfields in the data structure are ini-

tialized; characters to blank, numerics to zero, in the order in which
they are defined, during program initialization.

S This data structure is the program status data structure. Only one
data structure can be specified as the program status data structure.
u This is a data area data structure. The external data area (named in

positions 7 through 12) is retrieved when the program starts and
rewritten when the program ends. If you put blanks in positions 7
through 12, the local data area is used.

Note: The data area specified by the data structure is locked for
the duration of the program.

Positions 19-20 (Record Identifying Indicator)

Positions 21-30

Positions 31-43

Positions 44-47

Positions 48-51

152

RPG/400 Reference

Positions 19 and 20 must contain DS to indicate a data structure.

(External File Name)

Entry Explanation

Blank The data structure subfields are defined in the program.

File name This is the name of the file whose first record format contains the
field descriptions used as the subfield descriptions for this data struc-
ture.

(Reserved)
Positions 31 through 43 must be blank.

(Data Structure Occurrences)

Entry Explanation
Blank This is not a multiple-occurrence data structure.
1-9999 The number (right-adjusted) indicating the number of occurrences of

a multiple-occurrence data structure.

These positions must be blank if the data structure is the program status data
structure (indicated by an S in position 18), a file information data structure (INFDS),
or a data area data structure.

(Length)

Entry Explanation

Blank Length of the data structure is either the length specified on the input
field specifications if the data structure is an input field or the highest
To position specified for a subfield within the data structure if the
data structure is not an input field.

1-9999 Length of the data structure.

The length of the data structure can be specified in positions 48 through 51. This
entry is optional but, if used, must be right-adjusted. If this entry is not made, the
length of the data structure is one of the following:

* The length specified on the input field specifications if the data structure name
is an input field.

¢ The highest To position specified for a subfield within the data structure if the
data structure name is not an input field.

Positions 52-74 (Reserved)
Positions 52 through 74 must be blank.

Positions 75-80 (Comments)

Positions 75 through 80 may be used for comments or left blank. These positions
are not printed contiguously with positions 6-74 on the compiler listing.

Data Structure Subfield Specifications

Specifications for subfields, if used, must follow the data structure specification
statement to which they apply.

Position 7 (Reserved)
Position 7 must be blank.

Position 8 (Initialization Option)
Entry Explanation
Blank No subfield initialization.
I Subfield is initialized to value specified in positions 21 to 42.

Positions 9-20 (Reserved)
Positions 9 through 20 must be blank.

Positions 21-30 (External Field Name)
To rename a subfield in an externally described data structure, specify the external
name in positions 21 through 30, and specify the name to be used in the program
in positions 53 through 58. The remaining positions must be blank.

Positions 21-42 (Initialization Value)
If a subfield is to be initialized, specify a literal value or a named constant in these
positions. If no value is specified and position 8 contains I, the subfield is initial-
ized to zero or blanks, depending on the field type. The value may be continued
on the next line. See “Named Constant Continuation Specifications” on page 155
for more information on continuation.

See the RPG/400 User’s Guide for more information on how to specify the initializa-
tion value.

Positions 31-42 (Reserved)

Positions 31 through 42 must be blank, if an external field name is specified in
positions 21 to 30.

Chapter 8. Input Specifications 153

Position 43 (Internal Data Format)

Entry Explanation

Blank Subfield is in zoned decimal format or is character data if position 52
is blank.

P Subfield is in packed decimal format.

B Subfield is in binary format.

Note: Unlike the external data format field, the entry determines the internal
format of the data.

Positions 44-51 (Field Location)

Entry Explanation

Two 1- to 4-digit numbers Beginning of a subfield (from) and end of a sub-
field (to).

Keywords For the program status data structure or for a file

information data structure, special keywords
define the location of the subfields in the data
structures. Keywords for the program status data
structure are *STATUS, *PROGRAM, *PARMS, and
*ROUTINE. Keywords for the file information data
structure are *FILE, *RECORD, *=OPCODE, *STATUS,
and *ROUTINE.

Positions 44-47 are the From position. Positions 48-51 are the To position. Both
From and To must be right-justified, and leading zeroes may be omitted.

Position 52 (Decimal Positions)

Entry Explanation
Blank Character subfield
0-9 Number of decimal positions in a humeric subfield.

Position 52, along with position 43, determines the format of the subfield. An entry
must be made in position 52 for a numeric subfield.

Positions 53-58 (Field Name)

In positions 53 through 58, enter the name of the subfield that is being defined. The
name can be an array name, but cannot be an array element name.

Positions 59-74 (Reserved)

Positions 59 through 74 must be blank.

Positions 75-80 (Comments)

154

RPG/400 Reference

Positions 75 through 80 can be used for comments, or left blank. These positions
are not printed contiguously with positions 6-74 on the compiler listing.

Named Constant Specifications

Positions 7-20 (Reserved)
Positions 7 through 20 must be blank.

Positions 21-42 (Constant)

In positions 21-42 enter the constant or edit word being declared. The constant
may be continued on subsequent lines by coding a hyphen as the last character.
For character named constants the hyphen replaces the ending quote. A continued
numeric constant must result in a valid decimal number with at most 30 digits, a
maximum of 9 being to the right of the decimal point. Named constants can be
declared anywhere in the input specifications.

Position 43 (Data Type)

Entry Explanation
C Type of name is constant
Blank Constant continuation line

Positions 44-52 (Reserved)
Positions 44-52 must be blank.

Positions 53-58 (Constant Name)

Positions 53-58 contain the name of the constant. The normal rules for RPG/400
names apply.

Positions 59-74 (Reserved)
Positions 59-74 must be blank.

Named Constant Continuation Specifications

Positions 7-20 (Reserved)
Positions 7 through 20 must be blank.

Positions 21-42 (Constant)

In positions 21-42 enter the constant or edit word being continued. A character or
transparent literal constant may be continued over as many lines as desired so long
as the total length of the constant does not exceed 256 characters. A continued
numeric constant must result in a valid decimal number with at most 30 digits, a
maximum of 9 being to the right of the decimal point.

Positions 43-74 (Reserved)
Positions 43-74 must be blank.

The following are examples of named constants:

Chapter 8. Input Specifications 155

Namedconstant+++++++++C......... Fldnme.............
I*

I[+*The following is an example of a character constant:

I '"MICKEY' C MOUSE

I*

I[*The following is an example of a continued character constant:

I 'ABCDEF - C CHAR
I 'GHIJK'
I*

I[*The following is an example of a numeric constant:

I*

I 123456789 C INTEGER

I*

I*

[*The following is an example of a continued numeric constant:
I*

I 123456- C NUM
I 789
I*

I[*The following is an example of a hexadecimal constant:

I*

I X'010203" C HEX1

I*

I[*The following is an example of a continued hexadecimal constant:
I*

I X'010- C HEX2
I '202'
I*

I[*The following is an example of a continued transparent
I*constant. The Shift Out (SO) and Shift In (SI) characters

Ixare represented by o and i. The value of the combined literal
I*xis 'oK1K2K3K4K5i' if the transparent Titeral option is specified
I*(1 in position 57 of the control specification).

I*

I 'oK1K2K31 - C TRANS

I 'oK4K5i '

Figure 31. Named Constant Examples

156 RPG/400 Reference

Chapter 9. Calculation Specifications

Calculation specifications indicate the operations to be done on the data in a
program. Two general rules govern the writing of calculation entries:

e Each operation is specified on one line, except when there are AND/OR lines in
the calculation.
e Calculation entries must be grouped in the following order:
— Detail calculations
— Total calculations
— Subroutines.

Calculations within the groups must be specified in the order in which they are to
be done.

Each calculation specifications statement is divided into three parts that specify the
following:

¢ When calculations are to be done: The conditioning indicators specified in
positions 7 through 17 determine when and under what conditions the calcu-
lations are to be done.

e What kind of calculations are to be done: The entries specified in positions 18
through 53 determine the kind of calculations to be done, specify the data
(such as fields or files) upon which the operation is to be done, and specify the
field that is to contain the results of the calculation.

* What tests are to be made on the results of the operation: Indicators specified
in positions 54 through 59 are used to test the results of the calculations and
can condition subsequent calculations or output operations. The resulting indi-
cator positions have various uses, depending on the operation code. For the
uses of these positions, see the individual operation codes in Chapter 11,
“Operation Codes” on page 185.

The calculation specifications are entered on the RPG/400 Calculation Specifica-
tions. See Chapter 11, “Operation Codes” on page 185 for details on how these
positions must be specified for individual calculation operations.

The calculation specification can also be used to enter SQL statements into an
RPG/400 program. See RPG/400 User’s Guide and Programming: Structured
Query Language Reference for more information.

Calculation Specification Summary Chart

Table 30 (Page 1 of 3). Calculation Specification Summary Chart

Positions Name Entry Explanation

1-2 Page Page number Entry assigns a page number to each specifications
form.

3-5 Line Line number Entry numbers the specification line.

6 Form type C Identification for a calculation specification.

© Copyright IBM Corp. 1994

157

Table 30 (Page 2 of 3). Calculation Specification Summary Chart

Positions Name Entry Explanation
7-8 Control level Blank The calculation operation is done at detail calculation
time of each program cycle if the calculation is part of
a subroutine, or if the calculation is a declarative state-
ment.
LO
The calculation operation is done at total calculation
time of each program cycle.
L1-19
The calculation operation is done at total calculation
time if the indicator is on (because a control break
occurs or because the indicator is set on).
LR
The calculation operation is done after the last record
has been processed or after the LR indicator has been
set on.
SR
The calculation operation is part of an RPG/400 subrou-
tine. Optional.
AN, OR
Conditioning indicators on more than one line.
9-17 Conditioning Blank The operation is done if the condition specified in posi-
indicators tions 7 and 8 is satisfied.
An N in positions 9, 12, and 15 is used to check if the
indicator is not on (SETOF or containing 0) to decide if
calculations will occur. The following indicators are
valid in positions 9 through 17:
01-99 ¢ General indicator
KA-KN, KP-KY ¢ Function key indicator
L1-19 e Control level indicator
LR e Last record indicator
MR e Matching record indicator
H1-H9 Halt indicator
RT ¢ Return indicator
U1-us e External indicator
0A-0G, OV ¢ Overflow indicator.
If the conditions specified in positions 9 through 17 are
satisfied, the operation is done.
18-27 Factor 1 Symbolic name Entry specifies a symbolic name or actual data on
or literal which an operation is to be done. Valid entries
depend on the operation code.
28-32 Operation Operation code Entry specifies the operation to be done.

158 RPG/400 Reference

Table 30 (Page 3

of 3). Calculation Specification Summary Chart

Positions Name Entry Explanation

33-42 Factor 2 Symbolic name Entry specifies a symbolic name or actual data on

or literal which an operation is to be done. Valid entries
depend on the operation code.

43-48 Result field Field name The result field names the field that contains the result
of the calculation operation specified in positions 28
through 32. Valid entries depend on the operation
code.

49-51 Field length Blank The result field is defined elsewhere.

1-30 Numeric field length.
1-256 Character field length.
52 Decimal posi- Blank The result field is character data or has been defined
tions elsewhere in the program.
Number of decimal positions in a numeric result field.
0-9
53 Operation Blank No operation extension supplied.
extender
H Half-adjust is done.
N Record is read but not locked.
P Pad the result field with blanks.
54-59 Resulting indi- Blank No resulting indicator.
cators
01-99 General indicators.
KA-KN, KP-KY Function key indicators.
H1-H9 Halt indicators.
L1-19 Control level indicators.
LR Last record indicator.
0A-0G, OV Overflow indicators.
U1-u8 External indicators.
RT Return indicator.
Note: The resulting indicator positions (54 and 55, 56
and 57, and 58 and 59) have different uses,
depending on the operation code specified.

60-74 Comments Comments These positions can be used for comments to docu-
ment the purpose of the calculation.

75-80 Optional This space is available for comments.

Chapter 9. Calculation Specifications 159

Calculation Specification Statement

Position 6 (Form Type)

A C must appear in position 6 to identify this line as a calculation specifications
statement.

Positions 7-8 (Control Level)

160

RPG/400 Reference

Entry Explanation

Blank The calculation operation is done at detail calculation time for each
program cycle if the indicators in positions 9 through 17 allow it; or
the calculation is part of a subroutine.

LO The calculation operation is done at total calculation time for each
program cycle.

L1-19 The calculation operation is done when the appropriate control break
occurs at total calculation time, or when the indicator is set on.

LR The calculation operation is done after the last record has been proc-
essed or after the LR indicator has been set on.

SR The calculation operation is part of an RPG/400 subroutine. A blank
entry is also valid for calculations that are part of a subroutine.

AN, OR Indicators on more than one line condition the calculation.

Control Level Indicators
The L0 entry is used in positions 7 and 8 to indicate that the calculation is to be
done during total time and is not dependent on the occurrence of a control break.

If indicators L1 through L9 are specified in positions 7 and 8, the calculation is proc-
essed at total time only when the specified indicator is on. Remember that, if L1
through L9 are set on by a control break, all lower level indicators are also set on.
If positions 7 and 8 are blank, the calculation is done at detail time, is a statement
within a subroutine, or is a declarative statement.

The following operations can be specified within total calculations with positions 7
and 8 blank: PLIST, PARM, KLIST, KFLD, TAG, DEFN, and ELSE. (Conditioning indi-
cators in positions 9 through 17 are not allowed with these operations.) In addition,
all the preceding operations except TAG and ELSE can be specified anywhere within
the calculations, even between an ENDSR operation of one subroutine and the BEGSR
operation of the next subroutine or after the ENDSR operation for the last subroutine.

Last Record Indicator
The LR Indicator, if specified in positions 7 and 8, causes the calculation to be done
during the last total time.

If there is a primary file but no secondary files in the program, the LR indicator is set
on after the last input record has been read, the calculations specified for the
record have been done, and the detail output for the last record read has been
completed.

If there is more than one input file (primary and secondary), the RPG/400 pro-
grammer determines which files are to be checked for end-of-file by entering an E
in position 17 of the file description specifications. LR is set on when all files with
an end-of-file specification have been completely read, when detail output for the

last record in these files has been completed, and after all matching secondary
records have been processed.

When the LR indicator is set on after the last input record has been read, the
control level indicators L1 through L9 are also set on. If the indicators L1 through L9
have not been defined by an entry in positions 59 and 60 of the input specifications
or by *INxx when used in a result field, the indicators are set on when LR is on, but
they cannot be used in other specifications.

Subroutine Identifier

An SR entry in positions 7 and 8 indicates that the specification is part of a subrou-
tine. The SR entry is not required. Subroutine lines must appear after the total
calculation specifications. The operation codes BEGSR and ENDSR serve as delim-
iters for a subroutine.

AND/OR Lines Identifier

Positions 7 and 8 can contain AN or OR to define additional indicators (positions 9
through 17) for a calculation. Indicators in positions 9 through 17 contained in one
line are always in an AND relationship. Indicators contained on more than one line
can be a combination of AND and OR relationships. A maximum of seven AND/OR
lines can be specified in one group.

The entry in positions 7 and 8 of the line immediately preceding an AND/OR line or a
group of AND/OR lines determines when the calculation is to be processed. The
entry in positions 7 and 8 on the first line of a group applies to all AND/OR lines in
the group. A control level indicator (L1 through L9, L0, or LR) is entered for total
calculations, an SR or blanks for subroutines, and a blank for detail calculations.

Positions 9-17 (Indicators)

Entry Explanation

Blank The operation is processed on every record if the condition
specified in positions 7 and 8 is satisfied.

01-99 General indicators.

KA-KN, KP-KY Function key indicators.

L1-19 Control level indicators.

LR Last record indicator.

MR Matching record indicator.

H1-H9 Halt indicators.

RT Return indicator.

u1-us External indicators.

0A-0G, 0OV Overflow indicator.

Positions 10 and 11, 13 and 14, and 16 and 17 contain indicators that are tested to
determine if a particular calculation is to be processed. A blank in positions 9, 12,
and 15 designates that the indicator must be on for a calculation to be done. An N
in positions 9, 12, and 15 designates that the associated indicator must be off for a
calculation to be done.

One to three indicators can be entered in positions 9 through 17 on one line. Indi-
cators on the same line are in an AND relationship. The AND relationship means that
all three indicator conditions must be satisfied before the calculation can take place.
If fewer than three indicators are specified, entries need not be made in sequence;
that is, an indicator can be specified in positions 16 and 17, and positions 10

Chapter 9. Calculation Specificatons 161

through 15 can be blank. When more than three indicators are needed to condition
a calculation, AND/OR must be used. Seven is the maximum number of AND/OR lines
that can be specified on calculation specifications. Positions 9 through 17 can
contain a combination of the type of indicators discussed in the preceding text.

Positions 18-27 (Factor 1)

Factor 1 names a field or gives actual data (literals) or RPG/400 special words
(*NAMVAR DEFN) on which an operation is to be done. The entry must begin in posi-
tion 18. The entries that are valid for factor 1 depend on the operation code speci-
fied in positions 28 through 32. For the specific entries for factor 1 for a particular
operation code, see Chapter 11, “Operation Codes” on page 185. With some
operation codes, a colon can be used to separate parts of the factor, but must be
preceded by and followed by a valid entry.

Positions 28-32 (Operation)

Positions 28 through 32 specify the kind of operation to be done using factor 1,
factor 2, and the result field entries. The operation code must begin in position 28.
For further information on the operation codes, see Chapter 11, “Operation Codes”
on page 185.

The program processes the operations in the order specified on the calculation
specifications form.

Positions 33-42 (Factor 2)

Factor 2 names a field or gives the actual data (literals) on which a calculation is to
be done. For the file operation codes, factor 2 names a file or record format to be
used. The entry must begin in position 33. The entries that are valid for factor 2
depend on the operation code specified in positions 28 through 32. With some
operation codes, a colon can be used to separate parts of the factor, but must be
preceded by and followed by a valid entry. For the specific entries for factor 2 for a
particular operation code, see Chapter 11, “Operation Codes” on page 185.

Positions 43-48 (Result Field)

The result field names the field that contains the result of the calculation operation
specified in positions 28 through 32. Array elements are treated as fields. A look-
ahead field, user date special word a literal, or a named constant cannot appear as
the result field of a calculation. See Chapter 11, “Operation Codes” on page 185
for the result field rules for individual operation codes.

Positions 49-51 (Field Length)

162

RPG/400 Reference

Entry Explanation

1-30 Numeric field length.

1-256 Character field length.

Blank The result field is defined elsewhere.

Positions 49 through 51 specify the length of the result field. This entry is optional,
but can be used to define a field not defined elsewhere in the program. These
definitions of the field entries are allowed if the result field contains a field name.

The entry specifies the number of positions to be reserved for the result field. The
entry must be right-adjusted. The unpacked length (number of digits) must be
specified for numeric fields.

If the length of an arithmetic result to the left of the decimal point exceeds the spec-
ified length, the excess leftmost digits and any excess decimal positions are
dropped. No diagnostic message occurs if the result is truncated.

If the result field is defined elsewhere in the program, no entry is required for the
length. However, if the length is specified, and if the result field is defined else-
where, the length must be the same as the previously defined length.

If half-adjustment is specified in position 53 of the calculation specifications, the

entries for field length (positions 49 through 51) and decimal positions (position 52)
refer to the length of the result field after half-adjustment.

Position 52 (Decimal Positions)

Entry Explanation

Blank The result field is character data or has been defined elsewhere in
the program.

0-9 Number of decimal positions in a numeric result field.

Position 52 indicates the number of positions to the right of the decimal in a
numeric result field. If the numeric result field contains no decimal positions, enter
a '0' (zero). This position must be blank if the result field is character data. This
position can be left blank if the result field is numeric but was described by input or
calculation specifications or in an external description. In this case, field length
(positions 49 through 51) must also be left blank. The number of decimal positions
specified cannot exceed the length of the field.

Position 53 (Operation Extender)

Entry Explanation

Blank No operation extension supplied.
H Half adjust.

N Record is read but not locked.

P Pad the result field with blanks.

The operation extenders are single-character entries that provide additional attri-
butes to the operations that they accompany. Operation extenders are specified in
position 53 of calculation specifications.

An H indicates whether the contents of the result field are to be half adjusted
(rounded). Half-adjusting is done by adding 5 (-5 if the field is negative) one posi-
tion to the right of the last specified decimal position in the result field. The half
adjust entry is allowed only with arithmetic operations, but not with an MVR operation
or with a DIV operation followed by the MVR operation. Half adjust can be specified
only if the number of decimal positions in the generated result is greater than the
number of decimal positions in the result field. Resulting indicators are set
according to the value of the result field after half-adjusting has been done.

An N in a READ, READE, READP, REDPE, or CHAIN operation on an update disk file
indicates that a record is to be read, but not locked. If no value is specified, the
default action of locking occurs.

Chapter 9. Calculation Specificatons 163

Positions 54-59

A P indicates that, for CAT, SUBST, MOVEA, MOVEL, or XLATE, the result field is
padded on the right after executing the instruction if the result field is longer than
the result of the operation. Padding is done from the left for MOVE.

(Resulting Indicators)

These positions can be used, for example, to test the value of a result field after
the completion of an operation, or to indicate an end-of-file, error, or record-not-
found condition. The resulting indicator positions have different uses, depending on
the operation code specified. See the individual operation codes in Chapter 11,
“Operation Codes” on page 185 for a description of the associated resulting indica-
tors. For arithmetic operations, the result field is tested only after the field is trun-
cated and half-adjustment is done (if specified). The setting of indicators depends
on the results of the tests specified.

Entry Explanation

Blank No resulting indicator specified
01-99 General indicators

KA-KN, KP-KY Function key indicators

H1-H9 Halt indicators

L1-L9 Control level indicators

LR Last record indicator

0A-0G, 0OV Overflow indicators

U1l-u8 External indicators

RT Return indicator.

Resulting indicators cannot be used when the result field uses a non-indexed array.

If the same indicator is used as a resulting indicator on more than one calculation
specification, the last calculation specification processed determines the status of
that indicator.

Remember the following points when specifying resulting indicators:

e When the calculation operation is done, the specified resulting indicators are
set off, and, if a condition specified by a resulting indicator is satisfied, that indi-
cator is set on.

e When a control level indicator (L1 through L9) is set on, the lower level indica-
tors are not set on.

¢ When a halt indicator (H1 through H9) is set on, the program ends unless the
halt indicator is set off before the indicator is tested.

Positions 60-74 (Comments)

Positions 60 through 74 of each calculation specification line can be used for com-
ments to document the purpose of that calculation.

Positions 75-80 (Comments)

164

RPG/400 Reference

Positions 75 through 80 can be used for comments, or left blank. These positions
are not printed contiguously with positions 6-74 on the compiled listing.

Chapter 10. Output Specifications

Output specifications describe the record and the format of fields in a program
described output file and when the record is to be written. Output specifications are
optional for an externally described file. Output specifications can be divided into
two categories: record identification and control (positions 7 through 37), and field
description and control (positions 23 through 70). These specifications are entered
on the RPG/400 Output Specifications.

This chapter is organized in the following sequence:

¢ Output specifications summary charts
e Entries for program described files
» Entries for externally described files.

Output Specifications Summary Charts

Program Described Files, Record Identification and Control Entries
(Record Line)

Table 31 (Page 1 of 3). Program Described Files, Record Identification and Control Entries (Record Line)

Positions Name Entry Explanation
1-2 Page Page number Entry assigns a page number to each specification
form.
3-5 Line Line number Entry numbers the specification line.
6 Form type 0] Identification for an output specification.
7-14 File name Valid file name Same file name that appears on the file description
specifications for the output file.
14-16 Logical AND or OR AND/OR indicates a relationship between lines of output
relationship indicators. Not valid for output fields.
15 Type HorD Detail records.
T Total records.
E Exception records.
16-18 Record addi- ADD Add a record to the file or subfile.
tion deletion
field DEL Delete a record from a file.
16 Fetch overflow Blank If this position is blank for a printer file, overflow is not
specifier fetched.
F
Fetch overflow specified for printer files.
R
Release Release a device (work station) after output.

© Copyright IBM Corp. 1994 165

Table 31 (Page 2 of 3). Program Described Files, Record Identification and Control Entries (Record Line)

Positions Name Entry Explanation
17 Space before 0 or Blank Spaces zero lines before the line is printed.
1 Spaces one line before the line is printed.
2 Spaces two lines before the line is printed.
3 Spaces three lines before the line is printed.
18 Space after 0 or Blank Spaces zero lines after the line is printed.
1 Spaces one line after the line is printed.
2 Spaces two lines after the line is printed.
3 Spaces three lines after the line is printed.
19-20 Skip before 0 or Blank No skipping occurs.
01-99 Skip to specified line number before printing line.
AO0-A9 Specifies numbers between 100 and 109. Skip to
specified line number before printing line.
B0-B2 Specifies numbers between 110 and 112. Skip to
specified line number before printing line.
21-22 Skip after 0 or Blank No skipping occurs.
01-99 Skip to specified line number after printing the line.
AO0-A9 Specifies numbers between 100 and 109. Skip to

specified line number after printing line.

B0-B2 Specifies numbers between 110 and 112. Skip to
specified line number after printing line.

166 RPG/400 Reference

Table 31 (Page 3

of 3). Program Described Files, Record Identification and Control Entries (Record Line)

Positions Name Entry Explanation
23-31 Qutput indica- Blank The line or field is written every time the type of record
tors is checked for output.
The line or field is written if the indicators in these
positions are satisfied. The following indicators are
valid in these positions:
1-99
A general indicator used as a resulting indicator, field
indicator, or record identifying indicator
KA-KN, KP-KY
Function key indicator
L1-19
Control level indicator
H1-H9
Halt indicator
U1-us
External indicator set before running the program or
set as a result of a calculation operation
0A-0G, OV
Overflow indicator previously assigned to this file
MR Matching record indicator
LR Last record indicator
RT Return indicator
1P First-page indicator (valid only on heading or detail
lines).
32-37 EXCPT name Record group A name placed in these positions specifies exception
name records to be written. Any number of exception output
records can use the same EXCPT name, and they do
not have to be consecutive.
38-74 Blank
75-80 This space is available for comments.

Program Described Files, Field Description and Control Entries (Field

Line)
Table 32 (Page 1 of 2). Program Described Files, Field Description and Control Entries (Field Line)
Positions Name Entry Explanation
7-22 Blank
23-31 Field output See output Used to indicate whether fields within records are
indicators indicators printed.

Chapter 10. Output Specifications 167

Table 32 (Page 2

of 2). Program Described Files, Field Description and Control Entries (Field Line)

Positions Name Entry Explanation

32-37 Field name Valid field Any field name previously defined in the program.

name
Automatic page numbering. Field output indicators

PAGE, control the resetting of the PAGE field to zero.

PAGE1-PAGE7
UDATE or *DATE places the full date in the output
record; UDAY or *DAY, only the day; UMONTH or *MONTH,

UDATE, *DATE, only the month; UYEAR or *YEAR, only the year.

UDAY, *DAY,

UMONTH, *MONTH,

UYEAR, *YEAR Allows programmer to repeat data in an output record.

*PLACE

38 Edit codes Blank No edit code is used.

1-9, A-D, J-Q, Numeric fields are zero-suppressed and punctuated

X, Y, Z according to a predefined pattern without the use of
edit words. Edit codes 5 through 9 are defined
externally by an OS/400 function.

39 Blank after Blank The field is not reset.

B The field specified in positions 32 through 37 is reset
to blank or zero after the field is written to the output
record.

40-43 End position Blanks, +nnn, Defines the end position of a field or constant in the

-nnn, nnnn output record. The end position must not exceed the
record length for the file.

K1-K8 Length of the format name for a WORKSTN file.

44 Data format Blank The field is to be written in zoned decimal or character
format; numeric data is edited or a constant is speci-
fied on this line.

P
The field is to be written in packed decimal format.

B
The field is to be written in binary format.

L
The numeric output field is to have a preceding (left)
plus or minus sign.

R
The numeric output field is to have a following (right)
plus or minus sign.

45-70 Constant or Constant or Enter a constant or an edit word.

edit word edit word

Format name Name of the external format to be used by the WORKSTN
file.

70-74 Blank

75-80 Optional This space is available for comments.

168 RPG/400 Reference

Externally Described Files, Record Identification and Control Entries

Table 33 (Page 1

of 2). Externally Described Files, Record Identification and Control Entries

Positions Name Entry Explanation
1-2 Page Page number Entry assigns a page number to each specification
form.
3-5 Line Line number Entry numbers each specification line.
6 Form type (0] Identification for an output specification.
7-14 Record name Valid record Enter the record format name for externally described
format name files.
14-16 Logical AND or OR AND/OR specifies a relationship between two lines of
relationship output indicators.
15 Type HorD Detail records.
T Total records.
E Exception records.
16 Release R Release a device after output.
16-18 Record ADD Add a record to the file or subfile.
addition/deletion
DEL Delete an existing record from the file.
16-22 Space/Skip, Blank Not used for externally-described files.
Fetch
overflow
23-31 Qutput indica- Blank The line or field is written every time the type of record
tors is checked for output.
The line or field is written if the indicators in these
positions are satisfied. The following indicators are
valid in these positions:
1-99
A general indicator used as a resulting indicator, field
indicator, or record identifying indicator
KA-KN, KP-KY
Function key indicator
L1-19
Control level indicator
H1-H9
Halt indicator
U1-us
External indicator set before running the program or
set as a result of a calculation operation
MR
Matching record indicator
LR
Last record indicator
RT
Return indicator
1P

First-page indicator (valid only on heading or detail
lines).

Chapter 10. Output Specifications 169

Table 33 (Page 2 of 2). Externally Described Files, Record Identification and Control Entries

Positions Name Entry Explanation
32-37 EXCPT name Record group A name placed in these positions specifies exception
name records to be written. Any number of exception output

records can use the same EXCPT name, and they do
not have to be consecutive.

38-74 Blank

75-80 Optional This space is available for comments.

Externally Described Files, Field Description and Control Entries

Table 34. Externally Described Files, Field Description and Control Entries

Positions Name Entry Explanation

7-22 Blank

23-31 Field output See output Used to indicate whether fields within records are

indicators indicators written.

32-37 Field name Valid field Either the externally described field name or the new

name name as renamed using positions 53-58 of the input
specifications.
*ALL All fields are written.
38 Blank
39 Blank after Blank The field is not reset.

B The field specified in positions 32 through 37 is reset
to blank or zero after the field is written to the output
record.

40-74 Blank
75-80 Optional This space is available for comments.

Program Described Files

Position 6 (Form Type)
An O must appear in position 6 to identify this line as an output specifications state-
ment.

Record Identification and Control Entries

Entries in positions 7 through 37 identify the output records that make up the files,
provide the correct spacing on printed reports, and determine under what conditions
the records are to be written.

170 RPG/400 Reference

Positions 7-14 (File Name)

Entry Explanation
A valid file name Same file name that appears on the file description specifica-
tions for the output file.

Specify the file name on the first line that defines an output record for the file. The
file name specified must be the same file name assigned to the output, update, or
combined file on the file description specifications. If records from files are inter-
spersed on the output specifications, the file name must be specified each time the
file changes.

For files specified as output, update, combined or input with ADD, at least one
output specification is required unless an explicit file operation code with a data
structure name specified in the result field is used in the calculations. For example,
a WRITE operation does not require output specifications.

Positions 14-16 (Logical Relationship)
Entry Explanation
AND or OR AND/OR indicates a relationship between lines of output indicators.
AND/OR lines are valid for output records, but not for fields.

Positions 14 through 16 specify AND/OR lines for output operations. To specify this
relationship, enter AND/OR in positions 14 through 16 on each additional line fol-
lowing the line containing the file name. At least one indicator must be specified on
each AND line. For an AND relationship and fetch overflow position 16 must be spec-
ified on the first line only (file name line). A fetch overflow entry is required on OR
lines for record types requiring the fetch overflow routine.

Positions 17 through 22 (spacing and skipping) must be blank on an AND line. In
an OR relationship, positions 17 through 22 can be used; if they are blank, the defi-
nitions from the preceding line are used. Positions 7 through 13 must be blank
when AND/OR is specified.

An unlimited number of AND/OR lines can be specified on the output specifications.

Position 15 (Type)

Entry Explanation

HorD Detail records usually contain data that comes directly from the input
record or that is the result of calculations processed at detail time.
Heading records usually contain constant identifying information such
as titles, column headings, page number, and date. No distinction is
made between heading and detail records. The H/D specifications
are available to help the programmer document the program.

T Total records usually contain data that is the end result of specific
calculations on several detail records.
E Exception records are written during calculation time. Exception

records can be specified only when the operation code EXCPT is
used. See Chapter 11, “Operation Codes” for further information on
the EXCPT operation code.

Position 15 indicates the type of record to be written. Position 15 must have an

entry for every output record. Heading (H) and detail (D) lines are both processed
as detail records. No special sequence is required for coding the output records;

Chapter 10. Output Specifications 171

however, all lines of each record type (H, D, T, or E) are handled at separate times
within the program cycle.

Positions 16-18 (Record Addition/Deletion)

Entry Explanation
ADD Add a record to the file or subfile.
DEL Delete the last record read from the file. The deleted record cannot

be retrieved; the record is deleted from the system.

An entry of ADD is valid for input, output, or update files. DEL is valid for update DISK
files only.

Note: The file description specifications for a file using the ADD function for DISK
files must have an A in position 66.

This entry must appear on the same line that contains the record type (H, D, T, E)
specification (position 15). If an OR line is used following an ADD or DEL entry, this
entry applies to the OR line also.

Position 16 (Fetch Overflow/Release)

172

RPG/400 Reference

Entry Explanation

Blank Must be blank for all files except printer files (PRINTER specified in
positions 40 through 46 of the file description specifications). If posi-
tion 16 is blank for printer files, overflow is not fetched.

F Fetch overflow.
Release a device (workstation) after output.

Fetch Overflow

An F in position 16 specifies fetch overflow for the printer file defined on this line.
This file must be a printer file that has overflow lines. Fetch overflow is processed
only when an overflow occurs and when all conditions specified by the indicators in
positions 23 through 31 are satisfied. An overflow indicator cannot be specified on
the same line as fetch overflow.

If an overflow indicator has not been specified in positions 33 and 34 of the file
description specifications for a printer file, the compiler assigns one to the file. An
overflow line is generated by the compiler for the file, except when no other output
records exist for the file or when the printer uses externally described data. This
compiler-generated overflow can be fetched.

Overflow lines can be written during detail, total, or exception output time. When
the fetch overflow is specified, only overflow output associated with the file con-
taining the processed fetch is output. The fetch overflow entry (F) is required on
each OR line for record types that require the overflow routine. The fetch overflow
routine does not automatically advance forms.

The form length and overflow line can be specified on the line counter specifica-
tions, in the printer device file, or through an OS/400 override command.

Release

After an output operation is complete, the device used in the operation is released
if you have specified an R in position 16 of the corresponding output specifications.
See the “REL (Release)” on page 334 operation for further information on releasing
devices.

Positions 17-22 (Space and Skip)

Use positions 17 through 22 to specify line spacing and skipping for a printer file.
Spacing refers to advancing one line at a time, and skipping refers to jumping from
one print line to another.

If spacing and skipping are specified for the same line, the spacing and skipping
operations are processed in the following sequence:

Skip before
Space before
Print a line
Skip after
Space after.

If PRTCTL (printer control option) is not specified on the file description specifica-
tions, an entry must be made in one of the following positions when the device is
PRINTER: 17 (space before), 18 (space after), 19 and 20 (skip before), or 21 and 22
(skip after). If a space/skip entry is left blank, the particular function with the blank
entry (such as space before or space after) does not occur. If entries are made in
position 17 (space before) or in positions 19 through 22 (skip before and skip after)
and no entry is made in position 18 (space after), no space occurs after printing.
When PRTCTL is specified, it is used only on records with blanks specified in posi-
tions 17 through 22.

If a skip before or a skip after a line on a new page is specified, but the printer is
on that line, the skip does not occur.

Position 17 (Space Before)

Entry Explanation

0 or Blank No spacing

1 Single spacing

2 Double spacing
3 Triple spacing.

Position 18 (Space After)

Entry Explanation

0 or Blank No spacing

1 Single spacing

2 Double spacing
3 Triple spacing.

Chapter 10. Output Specifications 173

Positions 19-20 (Skip Before)

Positions 21-22

Positions 23-31

174

RPG/400 Reference

Entry Explanation

0 or Blank No skipping occurs.

01-99 Skip to lines 1 to 99 before printing for printer files.
A0-A9 Skip to lines 100 to 109 before printing for printer files.
BO-B2 Skip to lines 110 to 112 before printing for printer files.

(Skip After)

Entry Explanation

0 or Blank No skipping occurs.

01-99 Skip to lines 1 to 99 after printing for printer files.
A0-A9 Skip to lines 100 to 109 after printing for printer files.
BO-B2 Skip to lines 110 to 112 after printing for printer files.

(Output Indicators)

Entry Explanation

Blank The line or field is output every time the record (heading,
detail, total, or exception) is checked for output.

01-99 A general indicator that is used as a resulting indicator,
field indicator, or record identifying indicator.

KA-KN, KP-KY Function key indicators.

L1-19 Control level indicators.

H1-H9 Halt indicators.

U1-us8 External indicator set before running the program or set as
a result of a calculation operation.

0A-0G, 0OV Overflow indicator previously assigned to this file.

MR Matching record indicator.

LR Last record indicator.

RT Return indicator.

1P First-page indicator. Valid only on heading or detail lines.

Conditioning indicators are not required on output lines. If conditioning indicators
are not specified, the line is output every time that record is checked for output. Up
to three indicators can be entered on one specification line to control when a record
or a particular field within a record is written. The indicators that condition the
output are coded in positions 24 and 25, 27 and 28, and 30 and 31. When an N is
entered in positions 23, 26, or 29, the indicator in the associated position must be
off for the line or field to be written. Otherwise, the indicator must be on for the line
or field to be written.

If more than one indicator is specified on one line, all indicators are considered to
be in an AND relationship.

If the output record must be conditioned by more than three indicators in an AND
relationship, enter the letters AND in positions 14 through 16 of the following line
and specify the additional indicators in positions 23 through 31 on that line.

For an AND relationship, fetch overflow (position 16) can only be specified on the
first line. Positions 17 through 22 (spacing and skipping) must be blank for all AND
lines.

An overflow indicator must be defined on the file description specifications (posi-
tions 33 and 34) before it can be used as a conditioning indicator. If a line is to be

Positions 32-37

conditioned as an overflow line, the overflow indicator must appear on the main
specification line or on the OR line. If an overflow indicator is used on an AND line,
the line is not treated as an overflow line, but the overflow indicator is checked
before the line is written. In this case, the overflow indicator is treated like any
other output indicator.

If the output record is to be written when any one of two or more sets of conditions
exist (an OR relationship), enter the letters OR in positions 14 and 15 of the following
specification line, and specify the additional OR indicators on that line.

When an OR line is specified for a printer file, the skip and space entries (positions
17 through 22) can all be blank, in which case the space and skip entries of the
preceding line are used. If they differ from the preceding line, enter space and skip
entries on the OR line. If fetch overflow (position 16) is used, it must be specified on
each OR line.

(EXCPT Name)

When the record type is an exception record (indicated by an E in position 15), a
name can be placed in these positions of the record line. The EXCPT operation can
specify the name assigned to a group of the records to be output. This name is
called an EXCPT name. An EXCPT name must follow the rules for using symbolic
names. A group of any number of output records can use the same EXCPT name,
and the records do not have to be consecutive records.

When the EXCPT operation is specified without an EXCPT name, only those exception
records without an EXCPT name are checked and written if the conditioning indica-
tors are satisfied.

When the EXCPT operation specifies an EXCPT name, only the exception records with
that name are checked and written if the conditioning indicators are satisfied.

The EXCPT name is specified on the main record line and applies to all AND/OR lines.

If an exception record with an EXCPT name is conditioned by an overflow indicator,
the record is written only during the overflow portion of the RPG/400 cycle or during
fetch overflow. The record is not written at the time the EXCPT operation is proc-
essed.

An EXCPT operation with no fields can be used to release a record lock in a file.

The UNLCK operation can also be used for this purpose. In Figure 32 on page 176,
the record lock in file RCDA is released by the EXCPT operation.

Chapter 10. Output Specifications 175

L IR, U7/ U PP DU ST TN PSP, DUV ¢ DRV U A
CLONOINO2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
Cx*

C KEY CHAINRCDA

(" EXCPTRELESE

LR IR, U7/ U PP U S TP DUPUPE. DUV ¢ DRPPRPE. P

0

(0E3
ORCDA E RELESE
0* (no fields)

Figure 32. Record Lock in File Released by EXCPT QOperation

Field Description and Control Entries

Entries in positions 23 through 70 determine under what conditions and in what
format fields of a record are to be written.

Each field is described on a separate line. No entries are permitted in positions 7
through 22 of a field description line. Field description and control information for a
field begins on the line following the record identification line.

Positions 23-31 (Output Indicators)

Indicators specified on the field description lines determine whether a field is to be
included in the output record, except for PAGE reserved fields. See “PAGE,
PAGE1-PAGE7” on page 177 for information on how output indicators affect the
PAGE fields. The same types of indicators can be used to control fields as are used
to control records, see “Positions 23-31 (Output Indicators)” on page 174. Indica-
tors used to condition field descriptions lines cannot be specified in an AND/OR
relationship. Conditioning indicators cannot be specified on format name specifica-
tions for program described WORKSTN files.

Positions 32-37 (Field Name)

In positions 32 through 37, use one of the following entries to specify each field that
is to be written out:

e A field name

¢ Blanks if a constant is specified in positions 45 through 70

» A table name, array name, or array element

* A named constant

e The RPG/400 reserved words PAGE, PAGE1 through PAGE7, *PLACE, UDATE,
*DATE, UDAY, =*DAY, UMONTH, *MONTH, UYEAR, =*YEAR, *IN, *INxx, or *IN,xx

e A data structure name or data structure subfield name.

Field Names, Blanks, Tables and Arrays

The field names used must be defined in the program. Do not enter a field name if
a constant or edit word is used in positions 45 through 70. If a field name is
entered in positions 32 through 37, positions 7 through 22 must be blank.

176 RPG/400 Reference

Fields can be specified in any order because the sequence in which they appear on
the output records is determined by the entry in positions 40 through 43. If fields
overlap, the last field specified is the only field completely written.

When a non-indexed array name is specified, the entire array is written. An array
name with a constant index or variable index causes one element to be written.
When a table name is specified, the element last found in a “LOKUP (Look Up)” on
page 286 operation is written. The first element of a table is written if no suc-
cessful LOKUP operation was done.

The conditions for a field and the conditions for the record it is contained in must be
satisfied before the field is written out.

PAGE, PAGE1-PAGE7

To use automatic page numbering, code PAGE in positions 32 through 35 as the
name of the output field. Indicators specified in positions 23 though 31 do not con-
dition the field, but rather control the resetting of the PAGE field. When indicators are
specified and their conditions are met, the PAGE field is set to zero and incremented
by 1 before output; when the conditions are not met, the PAGE field is incremented
by 1 and then output. If page numbers are needed for several output files (or for
different numbering within one file), the entries PAGE1 through PAGE7 can be used.
The PAGE fields are automatically zero-suppressed by the Z edit code.

For more information on the PAGE reserved words, see Chapter 12, “RPG/400
Words with Special Functions.”

*PLACE

*PLACE is an RPG/400 reserved word that is used to repeat data in an output record.
Fields or constants that have been specified on previous specification lines can be
repeated in the output record without having the field and end positions named on
a new specification line. When *PLACE is coded in positions 32 through 37, all data
between the first position and the highest end position previously specified for a
field in that output record is repeated until the end position specified in the output
record on the *PLACE specification line is reached. The end position specified on
the *PLACE specification line must be at least twice the highest end position of the
group of fields to be duplicated. *PLACE can be used with any type of output. Blank
after (position 39), editing (positions 38, 45 through 70), data format (position 44),
and relative end positions cannot be used with *PLACE.

User Date Reserved Words

The user date reserved words (UDATE, *DATE, UDAY, =DAY, UMONTH *MONTH, UYEAR,
*YEAR) allow the programmer to supply a date for the program at run time. For
more information on the user date reserved words, see “Rules for User Date.”

*IN, *INxX, *IN,xX
The reserved words *IN, *INxx and *IN,xx allow the programmer to refer to and
manipulate RPG/400 indicators as data.

Chapter 10. Output Specifications 177

Position 38 (Edit Codes)

Entry Explanation

Blank No edit code is used.

1-9, A-D, J-Q, X, Y, Z Numeric fields are zero-suppressed and punctuated
according to a predefined pattern without the use of edit
words.

Position 38 is used to specify edit codes that suppress leading zeros in a humeric
field or to punctuate a numeric field without using an edit word. Allowable entries
are 1 through 9, A through D, J through Q, X, Y, Z, and blank.

Edit codes 5 through 9 are user-defined edit codes and are defined externally by an
0S/400 function. The edit code is determined at compilation time. Subsequent
changes to a user-defined edit code will not affect the editing by the RPG/400 com-
piler unless the program is recompiled.

For more information on edit codes see Chapter 14, “Editing Numeric Fields” on
page 403.

Position 39 (Blank After)

Entry Explanation
Blank The field is not reset.
B The field specified in positions 32 through 37 is reset to blank or zero

after the output operation is complete.

Position 39 is used to reset a numeric field to zeros or a character field to blanks.
If the field is conditioned by indicators in positions 23 through 31, the blank after is
also conditioned. This position must be blank for look-ahead, user date special
words, *PLACE, named constants, and constants.

Resetting fields to zeros is useful when totals are accumulated and written for each
control group in a program. After the total is accumulated and written for one
control group, the total field can be reset to zeros before accumulation begins on
the total for the next control group.

If blank after (position 39) is specified for a field to be written more than once, the B
should be entered on the last line specifying output for that field, or else the field
named may be set to blanks or zeros after the field is written to the output record.

Positions 40-43 (End Position)

178

RPG/400 Reference

Entry Explanation
1-n End position
K1-K8 Length of format name for WORKSTN file.

Positions 40 through 43 define the end position of a field or constant on the output
record, or define the length of the data description specifications record format
name for a program described WORKSTN file.

The K identifies the entry as a length rather than an end position, and the number
following the K indicates the length of the record format name. For example, if the
format name is CUSPMT, the entry in positions 42 and 43 is k6. Leading zeros are
permitted following the K, and the entry must be right-adjusted.

Valid entries for end positions are blanks, +nnn, -nnn, and nnnn. All entries in
these positions must end in position 43. Enter the position of the rightmost char-
acter of the field or constant. The end position must not exceed the record length
for the file.

If an entire array is to be written, enter the end position of the last element in the
array in positions 40 through 43. If the array is to be edited, be careful when speci-
fying the end position to allow enough positions to write all edited elements. Each
element is edited according to the edit code or edit word.

The +nnn or —nnn entry specifies the placement of the field or constant relative to
the end position of the previous field. The sign must be in position 40. The
number (nnn) must be right-adjusted, but leading zeros are not required. To calcu-
late the end position, use these formulas :

EP = PEP +nnn + FL
EP PEP —nnn + FL

EP is the calculated end position. PEP is the previous end position. For the first
field specification in the record, PEP is equal to zero. FL is the length of the field
after editing, or the length of the constant specified in this specification. The use of
+nnn is equivalent to placing nnn positions between the fields. A -nnn causes an
overlap of the fields by nnn positions. For example, if the previous end position
(PEP) is 6, the number of positions to be placed between the fields (nnn) is 5, and
the field length (FL) is 10, the end position (EP) equals 21.

When *PLACE is used, an actual end position must be specified; it cannot be blank
or a displacement.

An entry of blank is treated as an entry of +000. No positions separate the fields.

Position 44 (Data Format)

Entry Explanation

Blank The field is to be written in zoned decimal numeric or character
format; numeric data is edited, or a constant is specified on this line.

P The field is to be written in packed decimal format.

B The field is to be written in binary format.

L The numeric output field is to have a preceding (left) plus or minus
sign.

R The numeric output field is to have a following (right) plus or minus
sign.

This position must be blank if editing is specified.
The entry in position 44 specifies the format of the data in the records in the file.

This entry has no effect on the format used for internal processing of the output
field in the program.

Chapter 10. Output Specifications 179

Positions 45-70 (Constant or Edit Word)

Positions 45 through 70 are used to specify a constant, a format name, or an edit
word for a program described file.

Constants

Constants consist of character data (literals) that does not change from one proc-
essing of the program to the next. A constant is the actual data used in the output
record rather than a name representing the location of the data.

A constant of up to 24 characters can be placed in positions 45 through 70. The
constant must begin in position 46 (apostrophe in position 45), and it must end with
an apostrophe even if it contains only numeric characters. Any apostrophe used
within the constant must be entered twice; however, only one apostrophe appears
when the constant is written out. The field name (positions 32 through 37) must be
blank. Instead of entering a constant, you can use a named constant containing a
maximum of 256 characters.

Edit Words
An edit word specifies the punctuation of numeric fields, including the printing of
dollar signs, commas, periods, and sign status.

Format Name

The name of the data description specifications record format that is used by a
program described WORKSTN file must be specified in positions 45 through 54. One
format name is required for each output record for the WORKSTN file; specifying more
than one format name per record is not allowed. Conditioning indicators cannot be
specified on format name specifications for program described WORKSTN files. The
format name must be enclosed in apostrophes. You must also enter Kn in posi-
tions 40 through 43, where n is the length of the format name. For example, if the
format name is ‘CUSPMT’, enter K6 in positions 42 and 43. A named constant can
also be used.

Positions 71-74 (Reserved)

Positions 71 through 74 must be blank.

Positions 75-80 (Comments)

Positions 75 through 80 can be used for comments, or left blank.

Externally Described Files

Position 6 (Form Type)

180

RPG/400 Reference

An O must appear in position 6 to identify this line as an output specifications state-
ment.

Record Identification and Control Entries

Output specifications for an externally described file are optional. Entries in posi-
tions 7 through 37 of the record identification line identify the record format and
determine under what conditions the records are to be written.

Positions 7-14 (Record Name)

Entry Explanation
A valid record format name A record format name must be specified for an
externally described file.

Positions 14-16 (Logical Relationship)

Entry Explanation
AND or OR AND/OR indicates a relationship between lines of output indicators.
AND/OR lines are valid for output records, but not for fields.

See "Positions 14-16 (Logical Relationship)” on page 171 for more information.

Position 15 (Type)

Entry Explanation

Hor D Detail records

T Total records

E Exception records.

Position 15 indicates the type of record to be written. See “Position 15 (Type)” on
page 171 for more information.

Position 16 (Release)

Entry Explanation
R Release a device after output.

See "Release” on page 173 for more information.

Positions 16-18 (Record Addition)

Entry Explanation
ADD Add a record to a file.
DEL Delete an existing record from the file.

For more information on record addition, see “Positions 16-18 (Record
Addition/Deletion)” on page 172.

Positions 16-22 (Fetch Overflow/Space/Skip)

The fetch overflow, space, and skip entries for an externally described file must be
blank. Space and skip entries for an externally described printer file are specified
in the data description specifications.

Chapter 10. Output Specifications 181

Positions 23-31 (Output Indicators)
Output indicators for externally described files are specified in the same way as
those for program described files. The overflow indicators 0A-0G, 0V are not valid for
externally described files. For more information on output indicators, see “Positions
23-31 (Output Indicators)” on page 174.

Positions 32-37 (EXCPT Name)

An EXCPT name can be specified in these positions for an exception record line.
See “Positions 32-37 (EXCPT Name)” on page 175 for more information.

Field Description and Control Entries

For externally described files, the only valid field description and control entries are
conditioning indicators (positions 23 through 31), field name (positions 32 through
37), and blank after (position 39).

Positions 23-31 (Output Indicators)

Indicators specified on the field description lines determine whether a field is to be
included in the output record. The same types of indicators can be used to control
fields as are used to control records. See “Positions 23-31 (Output Indicators)” on
page 174 for more information.

Positions 32-37 (Field Name)

Entry Explanation

Valid field name A field name specified for an externally described file must be
present in the external description unless the external name was
renamed for the program.

*ALL Specifies the inclusion of all the fields in the record.

For externally described files, only the fields specified are placed in the output
record. *ALL can be specified to include all the fields in the record. If *ALL is speci-
fied, no other field description lines can be specified for that record. In particular,
you cannot specify a B (blank after) in position 39.

For an update record, only those fields specified in the output field specifications
and meeting the conditions specified by the output indicators are placed in the
output record to be rewritten. The values that were read are used to rewrite all
other fields.

For the creation of a new record, the fields specified are placed in the output
record. Those fields not specified or not meeting the conditions specified by the
output indicators are written as zeros or blanks, depending on the data format
specified in the external description.

Position 38 (Edit Codes)

Position 38 must be blank because edit codes for externally described files are
specified in the data description specifications.

182 RPG/400 Reference

Position 39 (Blank After)

Entry Explanation
Blank The field is not reset.
B The field specified in positions 32 through 37 is reset to blanks or

zeros after the output operation is complete. Do not specify *ALL in
positions 32 through 37.

For more information on blank after, see “Position 39 (Blank After)” on page 178.

Positions 40-43 (End Position)

These positions must be blank because the field is placed in the output record in
the positions specified by the data description specifications.

Position 44 (Data Format)

This position must be blank because the data format is defined in the data
description specifications.

Positions 45-70 (Constant or Edit Word)

These positions must be blank because editing is specified in the data description
specifications. If a constant is to be placed in an externally described file, it must
be done by a calculation operation.

Positions 71-74 (Reserved)
Positions 71 through 74 must be blank.

Positions 75-80 (Comments)
Positions 75 through 80 can be used for comments, or left blank.

Chapter 10. Output Specifications 183

184 RPG/400 Reference

Chapter 11. Operation Codes

© Copyright IBM Corp. 1994

Operation Codes

The RPG/400 programming language allows you to do many different types of oper-
ations on your data. Operation codes, which are entered on the calculation specifi-
cations, indicate the operation to be done. Usually they are abbreviations of the

name of the operation.

Many operation codes can be placed into categories. The first part of this chapter
includes general information about these categories. The latter part of the chapter
describes each operation code in alphabetical order and shows one or more exam-
ples for most of the operations.

The tables on the next few pages are a summary of the specifications for each
operation code.

¢ An empty column indicates that the field must be blank.

¢ All underlined fields are required.

e An underscored space denotes that there is no resulting indicator in that posi-

tion.
e Symbols
(*2)
(n)
(P)
+
BL
BN
BOF
EOF
EQ
ER
FD
HI

LO
LR
NR
NU
OF
ON

ZB

Half adjust the result.

No lock.

Pad the result with blanks.

Plus.

Minus.

Blank(s).

Blank(s) then numeric.
Beginning of the file.
End of the file.
Equal.

Error.

Found.

Greater than.
Indicator.

Less than.

Last record.

No record was found.
Numeric.

Off.

On.

Zero.

Zero or Blank.

185

Operation Codes

Table 35 (Page 1 of 4). Operation Code Specifications Summary

Codes Factor 1 Factor 2 Result Field Resulting
Indicators
ACQ : QRGRCOPP WORKSTN file _ER
ADD(%2) Addend Addend Sum +-Z
ANDXxXx Comparand Comparand
BEGSR Subroutine name
BITOF Bit numbers Character field
BITON Bit numbers Character field
CABXxx Comparand Comparand Label HI LO EQ
CALL Program name Plist name _ERLR
CASxx Comparand Comparand Subroutine HI LO EQ
name
CAT (p) Source string 1 Source string 2:number of Target string
blanks
CHAIN (n) Search argument File name Data structure NR ER _
CHECK? Comparator String Base String:start Left-most _ERFD
Position(s)
CHEKR? Comparator String Base String:start Right-most _ERFD
Position(s)
CLEAR *NOKEY Structure or Variable
CLOSE File name _ER _
COMIT Boundary _ER _
COMP? Comparand Comparand HI LO EQ
DEBUG Identifier Output file Debug info
DEFN *LIKE Referenced field Defined field
DEFN *NAMVAR Internal program area External data
area
DELET Search argument File name NR ER _
DIV(%) Dividend Divisor Quotient +-Z
DO Starting value Limit value Index value
DOUxx Comparand Comparand
DOWxx Comparand Comparand
DSPLY Message identifier Output queue Response _ER _
DUMP Identifier
ELSE
END Increment value
ENDCS
ENDDO Increment value

1 At least 1 resulting indicator is required.

2 A found indicator is required if the result field is not specified.

3 You must specify factor 2 or the result field. You may specify both.

186 RPG/400 Reference

Operation Codes

Table 35 (Page 2 of 4). Operation Code Specifications Summary

Codes Factor 1 Factor 2 Result Field Resulting
Indicators
ENDIF
ENDSL
ENDSR Label Return point
EXCPT EXCPT name
EXFMT Record format name _ER _
EXSR Subroutine name
FEOD File name _ER _
FORCE File name
FREE Program name _ER _
GOTO Label
IFxx Comparand Comparand
IN *LOCK Data area name _ER _
ITER
KFLD Key field
KLIST KLIST name
LEAVE
LOKUP 1
(array) Search argument Array name HILO EQ
(table) Search argument Table name Table name HI LO EQ
MHHZO Source field Target field
MHLZO Source field Target field
MLHZO Source field Target field
MLLZO Source field Target field
MOVE (p) Source field Target field +-27B
MOVEA (p) Source Target +-ZB
MOVEL (p) Source field Target field +-2ZB
MULT (%) Multiplicand Multiplier Product +-Z
MVR Remainder +-Z
NEXT Program device File name _ER _
OCUR Occurrence value Data structure Occurrence _ER _
value
OPEN File name _ER _
ORXxx Comparand Comparand
OTHER
ouT *LOCK Data area name _ER _

1 At least 1 resulting indicator is required.

2 A found indicator is required if the result field is not specified.

3 You must specify factor 2 or the result field. You may specify both.

Chapter 11. Operation Codes

187

Operation Codes

Table 35 (Page 3 of 4). Operation Code Specifications Summary

Codes Factor 1 Factor 2 Result Field Resulting
Indicators
PARM Target field Source field Parameter
PLIST PLIST name
POST?3 Program device File name INFDS name _ER _
READ (n) File name, Record name Data structure _ER EOF
READC Record name _ER EOF
READE (n) Search argument File name, Record name Data structure _ER EOF
READP (n) File name, Record name Data structure _ER BOF
REDPE (n) Search argument File name, Record name Data structure _ ER BOF
REL Program device File name _ER _
RESET *NOKEY Structure or Variable
RETRN
ROLBK _ER _
SCAN? Comparator Base string:start Left-most _ERFD
string:length position(s)
SELEC
SETGT Search argument File name NR ER _
SETLL Search argument File name NR ER EQ
SETOF? OF OF OF
SETON? ON ON ON
SHTDN ON
SORTA Array name
SQRT (V) Value Root
SUB(%2) Minuend Subtrahend Difference +-Z
SUBST (p) Length to extract Base string:start Target string _ER
TAG Label
TESTB! Bit numbers Character field OF ON EQ
TESTN? Character field NU BN BL
TESTZ1 Character field
TIME Numeric field
UNLCK Data area, record, or file _ER _
name

UPDAT File name Data structure _ER _
WHXxX Comparand Comparand
WRITE File name Data structure _ER EOF
XFOOT (%) Array name Sum +-Z

1 At least 1 resulting indicator is required.

2 A found indicator is required if the result field is not specified.

3 You must specify factor 2 or the result field. You may specify both.

188 RPG/400 Reference

Arithmetic Operations

Table 35 (Page 4 of 4). Operation Code Specifications Summary

Codes Factor 1 Factor 2 Result Field Resulting

Indicators

XLATE (p) From:To String:start Target String _ER _
Z-ADD (%2) Addend Sum +-Z
Z-SUB (%) Subtrahend Difference +-Z

1 At least 1 resulting indicator is required.
2 A found indicator is required if the result field is not specified.

3 You must specify factor 2 or the result field. You may specify both.

Arithmetic Operations

The arithmetic operations are:

“ADD (Add)” on page 206

“DIV (Divide)” on page 244

“MULT (Multiply)” on page 306

“MVR (Move Remainder)” on page 307

“SQRT (Square Root)” on page 355

“SUB (Subtract)” on page 356

“XFOOT (Summing the Elements of an Array)” on page 375
“Z-ADD (Zero and Add)” on page 378

“Z-SUB (Zero and Subtract)” on page 379.

For examples of arithmetic operations, see Figure 33 on page 191.

Remember the following when specifying arithmetic operations:

Arithmetic operations can be done only on numeric fields (including numeric
subfields, numeric arrays, numeric array elements, numeric table elements,
numeric named constants, numeric figurative constants, and numeric literals).
Arithmetic operations are done on data in packed decimal format. Data main-
tained in other formats is converted to or from packed decimal format.

Decimal alignment is done for all arithmetic operations. Even though truncation
can occur, the position of the decimal point in the result field is not affected.
An arithmetic operation does not change factor 1 and factor 2 unless they are
the same as the result field.

Any data placed in the result field replaces the data that was there.

The result field must be large enough to accommodate the results of the arith-
metic operation because an RPG/400 program does not cause an error on an
arithmetic overflow. If the result field is not large enough to accommodate the
results, digits are dropped from either or both ends, depending on the location
of the decimal point.

If you use conditioning indicators, it is your responsibility to ensure that the DIV
operation occurs immediately before the MVR operation. If the MVR operation
occurs before the DIV operation, undesirable results occur. For example, error
message RPGO907 may be issued.

Half adjust (position 53) can be specified for all the arithmetic operations except
for the MVR operation or for a DIV operation immediately followed by an MVR
operation.

Chapter 11. Operation Codes 189

Arithmetic Operations

190

RPG/400 Reference

For arithmetic operations in which all three fields are used:

e Factor 1, factor 2, and the result field can be three different fields.

e Factor 1, factor 2, and the result field can all be the same field.

e Factor 1 and factor 2 can be the same field but different from the result field.
e Either factor 1 or factor 2 can be the same as the result field.

The length of any field specified in an arithmetic operation cannot exceed 30 digits.
If the result exceeds 30 digits, digits are dropped from either or both ends,
depending on the location of the decimal point.

All arithmetic operations are done algebraically.

The results of all operations are signed (a plus sign is a hexadecimal F and a
minus sign is a hexadecimal D) according to the following rules. The sign is in the
zone portion of the low-order byte.

For information on using arrays with arithmetic operations, see “Specifying an Array
in Calculations” on page 398.

Addition: If factor 1 and factor 2 have like signs, the result field sign is the same. If
factor 1 and factor 2 have unlike signs, the result field sign is the same as the sign
of the factor with the larger absolute value.

Subtraction: Change the sign of factor 2, and apply the rules for addition.

Multiplication: If factor 1 and factor 2 have like signs, the result field sign is plus
(+). If factor 1 and factor 2 have unlike signs, the result field sign is minus (-).

Division: If factor 1 and factor 2 have like signs, the result field sign is plus (+). If
factor 1 and factor 2 have unlike signs, the result field sign is minus (-). The sign
of the remainder is the same as the factor 1 sign.

For the ADD, SUB, MULT, and DIV operations, factor 1 is not required. If factor 1 is
not specified, the operation is done as though factor 1 and the result field were the
same field.

Array Operations

CLONOINO2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComment s++++++*
the operations are processed, the field values are:

Cx*
Cx*
Cx*
C*
C*
C*
Cx*
C
C
c
C*
c
Cx*
C
C
C
C*
c
Cx*
C
C
C
C*
c
C
C*
C
Cx*
C
C*
c

Before
A

MmO O ™

= 1.00 G =
= 10.0 H

= 32 J

= =20 K =
= 6. L

= 10.0

ADD 1
B ADD C
B ADD D

Z-ADDC
SUB 1

SUB B
c SUB D

(]

Z-SUBC
MULT E
B MULT G
B MULT D

DIV B
C DIV J

MVR
SQRT K

XFOOTL

2.77

70

.6

25

1.0, 1.7, -1.1

<< >

=m

>xX =

Figure 33. Summary of Arithmetic Operations

30
52

30
51

30
84

30
62

53

RESULTS

032.00
005
0022.0
0052.0
-0032.0
060
0027.7000
-200.0000

007
0053.33

00.002

05.000

01.600

Array Operations
The array operations are:
e “LOKUP (Look Up)” on page 286

e “MOVEA (Move Array)” on page 295

e “SORTA (Sort an Array)” on page 354
¢ “XFOOT (Summing the Elements of an Array)” on page 375.

See each operation for an explanation of its function.

Chapter 11. Operation Codes 191

Branching Operations

Bit Operations

The bit operations are:

e “BITOF (Set Bits Off)” on page 209
e “BITON (Set Bits On)” on page 210
e “TESTB (Test Bit)” on page 361.

The BITOF and BITON operations allow you to turn off and on specific bits in a field
specified in the result field. The specified field must be a one-position character
field.

The TESTB operation compares the bits identified in factor 2 with the corresponding
bits in the field named as the result field.

In these operations, if factor 2 contains a 1-byte hexadecimal literal, the bits in the
factor 2 entry will affect the result field entry in the same way a 1-byte character
field would affect it.

Note: You can also format one or more characters at a time using move oper-
ations with hexadecimal literals. See “Move Operations” on page 198 for more
detail.

Branching Operations

192

RPG/400 Reference

The branching operations are:

e “CABxx (Compare and Branch)” on page 212

e “ENDSR (End of Subroutine)” on page 259

e “EXCPT (Calculation Time Output)” on page 260
e “GOTO (Go To)” on page 271

e “ITER (lterate)” on page 278

e “LEAVE (Leave a Do Group)” on page 284

e “TAG (Tag)” on page 360.

The GOTO operation (when used with a TAG operation) allows branching. For
example:

e Several operations can be skipped when certain conditions occur.
» Certain operations can be done for several, but not all, record types.
e Several operations can be repeated.

The EXCPT operation allows records to be written during calculation time instead of
at output time.

The TAG operation hames the label that identifies the destination of a GOTO or CABxx
operation.

The ITER operation transfers control from within a DO-group to the ENDDO statement
of the DO-group.

The LEAVE operation is similar to the ITER operation; however, LEAVE transfers
control to the statement following the ENDDO operation.

See each operation for an explanation of its function.

Compare Operations

Call Operations
The call operations are:

e “CALL (Call a Program)” on page 214

* “FREE (Deactivate a Program)” on page 269

e “PARM (Identify Parameters)” on page 318

e “PLIST (Identify a Parameter List)” on page 320
e “RETRN (Return to Caller)” on page 338.

The CALL, FREE, and RETRN operations allow an RPG/400 program to transfer
control to other programs. With the CALL, FREE, and RETRN function, the PLIST and
PARM operations can be used to allow the calling and called programs to address
the same data.

See each operation for an explanation of its function.

Compare Operations
The compare operations are:

¢ “ANDxx (And)” on page 207

e “COMP (Compare)” on page 236

e “CABxx (Compare and Branch)” on page 212

e “CASxx (Conditionally Invoke Subroutine)” on page 218
e “DOUxx (Do Until)” on page 248

e “DOWNxx (Do While)” on page 251

e “IFxx (If)” on page 273

e “ORxx (Or)" on page 315

e “WHxx (When True Then Select)” on page 371.

In the ANDxx, CABxx, CASxx, DOUxx, DOWxx, IFxx, ORxx, and WHxx operations, xx

can be:

XX Meaning

GT Factor 1 is greater than factor 2.

LT Factor 1 is less than factor 2.

EQ Factor 1 is equal to factor 2.

NE Factor 1 is not equal to factor 2.

GE Factor 1 is greater than or equal to factor 2.
LE Factor 1 is less than or equal to factor 2.
Blanks Unconditional processing (CASxx or CABxx).

The compare operations test fields for certain conditions. Resulting indicators
assigned in positions 54 through 59 are set according to the results of the opera-
tion, or a branch occurs based on the results of the operation. No fields are
changed by these operations.

Remember the following when using the compare operations:

¢ If numeric fields are compared, fields of unequal length are aligned at the
implied decimal point. The fields are filled with zeros to the left and/or right of
the decimal point making the field lengths and number of decimal positions
equal for comparison.

Chapter 11. Operation Codes 193

Data-Area Operations

 |f character fields are compared, fields of unequal length are aligned to their
leftmost character. The shorter field is filled with blanks to equal the length of
the longer field so that the field lengths are equal for comparison.

e All numeric comparisons are algebraic. A plus (+) value is always greater than
a minus (-) value.

¢ Blanks within numeric fields are assumed to be zeros.

* Numeric fields are converted to packed decimal format, if necessary, before
they are compared.

» If an alternate collating sequence (position 26 of the control specification) has
been specified for the comparison of character fields, the fields are converted
to the alternate sequence and then compared. If *HIVAL and *LOVAL are used
to set up the comparison, the alternate collating sequence may alter the value
before the compare operation. However, the actual field value will not change.

e A character field cannot be compared with a numeric field.

e An array name cannot be specified in a compare operation, but an array
element may be specified.

e The ANDxx and ORxx operations can be used with DOUxx, DOWxx, IFxx, and
WHxx.

Data-Area Operations

194

RPG/400 Reference

The data area operations are:

* “IN (Retrieve a Data Area)” on page 276
e “OUT (Write a Data Area)” on page 317
e “UNLCK (Unlock a Data Area or Release a Record)” on page 368.

The IN and OUT operations allow you to retrieve and write one or all data areas in a
program, depending on the factor 2 entry.

The IN and OUT operations also allow you to control the locking or unlocking of a
data area. When a data area is locked, it can be read but not updated by other
programs.

The following lock states are used:

e For an IN operation with *LOCK specified, an exclusive allow read lock state is
placed on the data area.
e For an OUT or UNLCK operation, the exclusive allow read lock state is released.

During the actual transfer of data into or out of a data area, there is a system-
internal lock on the data area. If several users are contending for the same data
area, a user may get the error message RPG0431 indicating that the data area is not
available.

Remember the following when using the IN, OUT, and UNLCK operations:

* A data-area operation cannot be done on a data area that is not defined to the
operating system.

» Before the IN, OUT, and UNLCK operations can be done on a data area, you must
specify that data area in the result field of an *NAMVAR DEFN statement. (For

Declarative Operations

further information on the DEFN statement, see “DEFN (Field Definition)” on
page 239.)

e The data-area operations can be done on a data-area data structure that is
implicitly retrieved only if the data-area data structure name is specified in the
result field of an *NAMVAR DEFN statement.

* A locked data area cannot be updated or locked by another RPG/400 program;
however, the data area can be retrieved in your own program by an IN opera-
tion with factor 1 blank.

* A data-area name cannot be the name of a multiple-occurrence data structure,
an input record field, an array, an array element, or a table.

e A data area cannot be the subfield of a multiple occurrence data structure, a
data-area data structure, a program-status data structure, a file-information data
structure (INFDS), or a data structure that appears on an *NAMVAR DEFN state-
ment.

A data structure defined with a U in position 18 of the input specifications form
indicates that the data structure is a data area. The data area is automatically read
and locked at program initialization time, and the contents of the data structure are
written to the data area when the program ends with LR on.

Specify *LDA in factor 2 of a *NAMVAR DEFN statement to define the LDA data struc-
ture.

Use the *NAMVAR DEFN operation with *PDA in factor 2 to define the name in the
result field as the PDA data area. The result field follows the current conventions
for *NAMVAR DEFN.

Declarative Operations

The declarative operations do not cause action to occur; they can be specified any-
where within calculations. The control level entry (positions 7 and 8) can be blank
or can contain an entry to group the statements within the appropriate section of
the program. The control level entry is for documentation purposes only. The
declarative operations are:

* “DEFN (Field Definition)” on page 239

* “KFLD (Define Parts of a Key)” on page 281

e “KLIST (Define a Composite Key)” on page 282
e “PARM (Identify Parameters)” on page 318

e “PLIST (Identify a Parameter List)” on page 320
e “TAG (Tag)” on page 360.

The DEFN operation either defines a field based on the attributes (length and
decimal positions) of another field or defines a field as a data area.

The KLIST and KFLD operations are used to indicate the name by which a com-
posite key field may be referred and the fields that compose the composite key. A
composite key is a key that contains a list of key fields. It is built from left to right,
with the first KFLD specified being the leftmost (high-order) field of the composite
key.

The PLIST and PARM operations are used with the CALL operation to allow a called
program access to parameters from a calling program.

Chapter 11. Operation Codes 195

File Operations

The TAG operation names the destination of a branching operation such as GOTO or
CABxx.

File Operations

196

RPG/400 Reference

The file operation codes are:

e “ACQ (Acquire)” on page 205

e “CHAIN (Random Retrieval from a File)” on page 224
e “CLOSE (Close Files)” on page 234

e “COMIT (Commit)” on page 235

e “DELET (Delete Record)” on page 243

e “EXCPT (Calculation Time Output)” on page 260

e “EXFMT (Write/Then Read Format)” on page 262

e “FEOD (Force End of Data)” on page 267

¢ “FORCE (Force a Certain File to Be Read Next Cycle)” on page 268
e “NEXT (Next)’ on page 308

e “OPEN (Open File for Processing)” on page 313

e “POST (Post)” on page 322

e “READ (Read a Record)” on page 323

e “READC (Read Next Changed Record)” on page 325
* “READE (Read Equal Key)” on page 326

e “READP (Read Prior Record)” on page 329

e “REDPE (Read Prior Equal)” on page 331

e “REL (Release)” on page 334

e “ROLBK (Roll Back)” on page 339

e “SETGT (Set Greater Than)” on page 344

e “SETLL (Set Lower Limit)” on page 348

e “UNLCK (Unlock a Data Area or Release a Record)” on page 368
e “UPDAT (Modify Existing Record)” on page 369

e “WRITE (Create New Records)” on page 374.

File operations can be used with both program described and externally described
files (F or E respectively in position 19 of the file description specifications).

When an externally described file is used with certain file operations, a record
format name, rather than a file name, can be specified in factor 2. Thus, the proc-
essing operation code retrieves and/or positions the file at a record format of the
specified type according to the rules of the calculation operation code used.

When the OVRDBF command is used with the MBR (*ALL) parameter specified,
the SETLL, SETGT and CHAIN operations only process the current file member.
For more information, refer to the Database Guide.

The WRITE and UPDAT operations that specify a program described file name in
factor 2 must have a data structure name specified in the result field. The CHAIN,
READ, READE, READP, and REDPE operations that specify a program described file
name in factor 2 may have a data structure name specified in the result field. With
the CHAIN, READ, READE, READP, and REDPE operations, data is transferred directly
between the file and the data structure, bypassing the normal field extract function.
Thus, no record identifying or field indicators are set on as a result of an input oper-
ation to a data structure. If all input and output operations to the file have a data
structure specified in the result field, input and output specifications are not
required. However, the data structure must be defined on the input specifications.

Information Operations

If an input operation (CHAIN, EXFMT, READ, READC, READE, READP, REDPE) does not
retrieve a record because no record was found, because an error occurred in the
operation, or because the last record was already retrieved (end of file), then no
data is extracted and all fields in the program remain unchanged.

If you specify an N in position 53 of a CHAIN, READ, READE, READP, or REDPE opera-
tion for an update disk file, a record is read without locking. If no value is specified
in position 53, the record is locked if the file is an update disk file.

Exception/errors that occur during file operations can be handled by the pro-
grammer (by coding an error indicator or specifying a file-error subroutine), or by
the RPG/400 error handler.

Indicator-Setting Operations

The “SETON (Set On)” and “SETOF (Set Off)” operations set (on or off) indicators
specified in positions 54 through 59. At least one resulting indicator must be speci-
fied in these positions. Remember the following when setting indicators:

e The 1P, MR, KA through KN, and KP through KY indicators cannot be set on by
the SETON operation.

e The 1P and MR indicators cannot be set off by the SETOF operation.

e Setting L1 through L9 on or off with a SETON or SETOF operation does not auto-
matically set any lower control level indicators.

Information Operations
The information operations are:

e “DEBUG (Debug Function)” on page 237
e “DUMP (Program Dump)” on page 256

e “SHTDN (Shut Down)” on page 353

e “TIME (Time of Day)” on page 366.

The DEBUG operation writes the following information that you can use to debug an
RPG/400 program:

e The source statement sequence number of the DEBUG operation

e The contents of factor 1 (if factor 1 is specified) that identifies the DEBUG written
information

¢ All indicators that are on at the time the operation is encountered

* The contents of the result field (if the result field contains an entry).

The information is sent to the file named in factor 2, or, if factor 2 is blank, the
information is sent to a system defined file.

The DUMP operation provides a dump of all indicators, fields, data structures, arrays,
and tables used in a program.

The SHTDN operation allows the program to determine whether the system operator
has requested shutdown. If so, the resulting indicator that must be specified in
positions 54 and 55 is set on.

The TIME operation allows the program to access the system time of day and
system date at any time during program running.

Chapter 11. Operation Codes 197

Move Operations

Initialization Operations

The initialization operations provide run-time clearing and resetting of all elements
in a structure (record format, data structure, array, or table) or a variable (field, sub-
field, or indicator).

The initialization operations are:

e “CLEAR (Clear)” on page 231
e “RESET (Reset)” on page 335.

The CLEAR operation sets all elements in a structure or variable to zero, blank, or
'0', depending on the field type (humeric, character, or indicator). This allows you
to clear structures globally, instead of element by element.

The RESET operation sets all elements in a structure or variable to their initial values
(the values they had at the end of the initialization step in the program cycle).

The RESET operation is used with data structure initialization and the initialization
subroutine (*INZSR). You can use both data structure initialization and the *INZSR
to set the initial value of a variable. The initial value will be used to set the variable
if it appears in factor 2 of a RESET operation.

When these operation codes are applied to record formats, only fields which are
output are affected. See “CLEAR (Clear)” on page 231 and “RESET (Reset)” on
page 335 for more detail.

For more information see “Initialization” in Chapter 9 of the RPG/400 User’s Guide.

Message Operation

The message operation “DSPLY (Display Function)” on page 253 allows communi-
cation between the program and the system console or between the program and
the display workstation that requested the program.

Move Operations

The move operations are:

e “MOVE (Move)” on page 292
* “MOVEA (Move Array)” on page 295
¢ “MOVEL (Move Left)” on page 302.

Move operations transfer all or part of factor 2 to the result field. Factor 2 remains
unchanged. Factor 1 must be blank. Resulting indicators can be specified in posi-
tions 54 through 59., except for the MOVE and MOVEL operations if the result field is
an array, or for the MOVEA operation if the result field is an array or array element.

In the move operations, factor 2 and the result field are generally of the same type
(both numeric or both character). However, you can use the move operations to
change numeric fields to character fields and character fields to numeric fields. To
change a numeric field to a character field, enter the name of the numeric field in
factor 2 and specify a character result field. To change a character field to a
numeric field, enter the name of the character field in factor 2 and specify a
numeric result field.

198 RPG/400 Reference

Move-Zone Operations

When a character field is moved into a numeric result field, the digit portion of each
character is converted to its corresponding numeric character and then moved to
the result field. Blanks are transferred as zeros. For the MOVE operation, the zone
portion of the rightmost character is converted to its corresponding sign and moved
to the rightmost position of the numeric result field. It becomes the sign of the field.
(See Figure 69 on page 293 for an example.) For the MOVEL operation, the zone
portion of the rightmost character of factor 2 is converted and used as the sign of
the result field (unless factor 2 is shorter than the result field) whether or not the
rightmost character is included in the move operation. (See Figure 71 on page 304
for an example.)

If move operations are specified to move data into numeric fields, the decimal posi-
tions specified for the factor 2 field are ignored. For example, if 1.00 is moved into
a three-position numeric field with one decimal position, the result is 10.0.

If you specify P in position 53 for a move operation, the result field is padded from
the right for MOVEL and MOVEA and from the left for MOVE. The pad characters are
blank for character, O for numeric and '0' for indicator. The padding takes place
after the operation. If you use MOVE or MOVEL to move a field to an array, each
element of the array will be padded. If you use these operations to move an array
to an array and the result contains more elements than the factor 2 array, the same
padding takes place but the extra elements are not affected. A MOVEA operation
with an array name in the result field will pad the last element affected by the oper-
ation plus all subsequent elements.

When resulting indicators are specified for move operations, the result field deter-
mines which indicator is set on. If the result field is a character field, only the
resulting indicator in positions 58 and 59 can be specified. This indicator is set on
if the result field is all blanks. When the result field is numeric, all three resulting
indicator positions may be used. These indicators are set on as follows:

High (54-55) Set on if the result field is greater than O.
Low (56-57) Set on if the result field is less than 0.
Equal (58-59) Set on if the result field is equal to 0.

Move Zone Operations
The move zone operations are:

e “MHHZO (Move High to High Zone)” on page 288
e “MHLZO (Move High to Low Zone)” on page 289
e “MLHZO (Move Low to High Zone)” on page 290
e “MLLZO (Move Low to Low Zone)” on page 291.

The move zone operations move only the zone portion of a character.

A minus (-) sign in a move zone operation does not result in a negative character in
the result field, because a minus sign is represented by a hexadecimal 60 internally
and a D zone is required for a negative character. Characters J through R have D

zones and can be used to obtain a negative value

(J = hexadecimal D1, ..., R = hexadecimal D9).

Note: Whenever the word high is used in a move zone operation, the field
involved must be a character field; whenever low is used, the field involved can be
either a character or a numeric field.

Chapter 11. Operation Codes 199

String Operations

Character Factor
NEREERNRE:
‘ MLHZ0 |
MHHZO0 MLLZO
I MHLZO l
v | | | | | Result
Character Field
Numeric Factor
T T O
MLHZO | uLLz0
VoL e
Character Field

Figure 34. Function of MOVE Zone Operations

Character

v
Numeric

Numeric

v
Numeric

‘ ‘ Result

Field

Factor
‘ ‘ Two

String Operations

The string operations include concatenation, scanning, substringing, translation, and

200

RPG/400 Reference

verification. String operations can only be used on character fields.

The string operations are:

e “CAT (Concatenate Two Character Strings)” on page 220
e “CHECK (Check Characters)” on page 227

e “CHEKR (Check Reverse)” on page 229

e “SCAN (Scan Character String)” on page 340

e “SUBST (Substring)” on page 357
e “XLATE (Translate)” on page 376.

The CAT operation concatenates two character strings to form one.

The CHECK and CHEKR operations verify that each character in factor 2 is among the
valid characters in factor 1. CHECK verifies from left to right and CHEKR from right to

left.

The SCAN operation scans a base character string for occurrences of a second

specified character string.

The SUBST operation extracts a specified character string from a base character

string.

The XLATE operation translates characters in factor 2 according to the FROM and TO

strings in factor 1.

Structured Programming Operations

Note: Figurative constants cannot be used in the factor 1, factor 2, or result fields.
No overlapping in a data structure is allowed for factor 1 and the result field, or
factor 2 and the result field.

In the string operations, factor 1 and factor 2 may have two parts. If both parts are
specified, they must be separated by a colon. This option applies to all but the
CAT, CHECK, CHEKR, and SUBST operations (where it applies only to factor 2).

If you specify P in position 53 for the CAT, SUBST, or XLATE operations, the result
field is padded from the right with blanks after the operation.

See each operation for a more detailed explanation.

Structured Programming Operations
The structured programming operations are:

¢ “ANDxx (And)” on page 207

e “CASxx (Conditionally Invoke Subroutine)” on page 218
e “DO (Do)” on page 245

e “DOUxx (Do Until)” on page 248

e “DOWxx (Do While)” on page 251

e “ELSE (Else)” on page 257

e “ENDyy (End a Group)” on page 258

e “IFxx (If)” on page 273

e “ITER (lterate)” on page 278

e “LEAVE (Leave a Do Group)” on page 284

e “ORxx (Or)" on page 315

e “OTHER (Otherwise Select)” on page 316

e “SELEC (Begin a Select Group)” on page 342
e “WHxx (When True Then Select)” on page 371.

The DO operation allows the processing of a group of calculations zero or more
times starting with the value in factor 1, incrementing each time by a value on the
associated ENDDO operation until the limit specified in factor 2 is reached.

The DOUxx operation allows the processing of a group of calculations one or more
times based on the results of comparing factor 1 and factor 2. The end of a DOUxx
operation is indicated by an ENDDO operation.

The DOWxx operation allows the processing of a group of calculations zero or more
times based on the results of comparing factor 1 and factor 2. The end of a DOWxx
operation is indicated by an ENDDO operation.

The LEAVE operation interrupts control flow prematurely and transfers control to the
statement following the ENDDO operation of an iterative structured group. The ITER
operation causes the next loop iteration to occur immediately.

An IFxx operation allows the processing of a group of calculations based on the
results of comparing factor 1 and factor 2. The ELSE operation allows you to
specify a group of calculations to be processed if the IFxx condition is not satisfied.
The end of an IFxx group is indicated by ENDIF.

The SELEC, WHxx, and OTHER group of operations are used to conditionally process
one of several alternative sequences of operations. The beginning of the select

Chapter 11. Operation Codes 201

Structured Programming Operations

group is indicated by the SELEC operation. The WHxx operations are used to choose
the operation sequence to process. The OTHER operation is used to indicate an
operation sequence that is processed when none of the WHxx conditions are ful-
filled. The end of the select group is indicated by the ENDSL operation.

The ANDxx and ORxx operations are used with the DOUxx, DOWxx, WHxx, and IFxx
operations to specify a more complex condition than the comparison of a single
factor 1 and factor 2 pair. The ANDxx operation has higher precedence than the
ORxx operation.

LI IR AR ESTITE. PUPIPIVE, UDRPRP' SRR PR JUPUPUPE. JUPRI ¢ DUPRPRP PPNy AN
CLONOINO2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

Cx*
C
C*
C*
Cx*
Cx*

>(_

OOOOOO

In the following example, indicator 25 will be set on only if the
first two conditions are true or the third condition is true.
Algebraically, this would be represented as:

(((FIELDA > FIELDB) & (FIELDA >= FIELDC)) | (FIELDA < FIELDD))

FIELDA IFGT FIELDB
FIELDA ANDGEFIELDC
FIELDA ORLT FIELDD

SETON 25
ENDIF

Figure 35. Example of AND/OR Precedence

202

RPG/400 Reference

The CASxx operation allows a subroutine to be conditionally selected for processing.
An ENDCS operation ends a CASxx group. For more information about the CASxx
operation, see “Compare Operations” on page 193.

A DO, DOUxx, DOWxx, IFxx, or SELEC operation (with or without ANDxx or ORxx oper-
ations), and an ENDyy operation, delimit a structured group. The ENDDO operation
ends each DO, DOUxx, and DOWxx group or causes the structured group to be
reprocessed until the specified ending conditions are met. The SELEC must end
with an ENDSL. An IFxx operation and an IFxx operation with an ELSE operation
must end with an ENDIF operation. Using END gives you the same results as using
ENDIF, ENDSL, or ENDDO.

The rules for making the comparison on the ANDxx, DOUxx, DOWxx, IFxx, ORxx and
WHxx operation codes are the same as those given under “Compare Operations” on
page 193.

In the ANDxx, CASxx, DOUxx, DOWxx, IFxx, ORxx, and WHxx operations, xx can be:

XX Meaning

GT Factor 1 is greater than factor 2.

LT Factor 1 is less than factor 2.

EQ Factor 1 is equal to factor 2.

NE Factor 1 is not equal to factor 2.

GE Factor 1 is greater than or equal to factor 2.
LE Factor 1 is less than or equal to factor 2.
Blanks Unconditional processing (CASxx only).

Subroutine Operations

In the ENDyy operation, yy can be:

yy Meaning

CS End for CASxx operation.

DO End for DO, DOUxx, and DOWxx operation.
IF End for IFxx operation.

SL End for SELEC operation.

Blanks End for any structured operation.

Note: The yy in the ENDyy operation is optional.

If a structured group, in this case a do group, contains another complete structured
group, together they form a nested structured group. Structured groups can be
nested to a maximum depth of 100 levels. The following is an example of nested
structured groups, three levels deep:

Remember the following when specifying structured groups:

Each nested structured group must be completely contained within the outer
level structured group.

Each structured group must contain one of a D0, DOUxx, DOWxx, IFxx, or SELEC
operation and its associated ENDyy operation.

A structured group can be contained in detail, total, or subroutine calculations,
but it cannot be split among them.

Branching into a structured group from outside the structured group may cause
undesirable results.

Subroutine Operations

An RPG/400 subroutine is a group of calculation specification statements in a
program that can be processed several times in that program. The RPG/400 sub-
routine operations are:

“BEGSR (Beginning of Subroutine)” on page 208
“ENDSR (End of Subroutine)” on page 259

“EXSR (Invoke Subroutine)” on page 263

“CASxx (Conditionally Invoke Subroutine)” on page 218.

Chapter 11. Operation Codes 203

RPG/400 subroutine specifications must follow all other calculation operations that
can be processed for a program; however, the PLIST, PARM, KLIST, KFLD, and DEFN
operations may be specified between an ENDSR operation (the end of one subrou-
tine) and a BEGSR operation (the beginning of another subroutine) or after all sub-
routines. A subroutine can be called from any point in the calculation operations.
Subroutine lines can be identified by SR in positions 7 and 8. The only valid entries
in positions 7 and 8 of a subroutine line are SR, AN, OR, or blanks.

For information on how to code a subroutine, see “Coding Subroutines” on
page 264.

Test Operations

The test operations are:

e “TESTB (Test Bit)” on page 361
e “TESTN (Test Numeric)” on page 363
e “TESTZ (Test Zone)” on page 365.

The TESTx operations allow you to test character fields specified in the result field.

Operation Codes List

204

RPG/400 Reference

The remainder of this chapter describes, in alphabetical order, each operation code.

ACQ (Acquire)

ACQ

Code

Factor 1

Factor 2

Result Field Indicators

ACQ

Device name

WORKSTN file

ER

The ACQ operation acquires the program device specified in factor 1 for the WORKSTN
file specified in factor 2. If the device is available, ACQ attaches it to the file. If it is
not available or is already attached to the file, an error occurs. If an indicator is
specified in positions 56 and 57, the indicator is set on. If no indicator is specified,
but the INFSR subroutine is specified, the INFSR receives control when an
error/exception occurs. If no indicator or INFSR subroutine is specified, the default
error/exception handler receives control when an error/exception occurs.

No input or output operation occurs when the ACQ operation is processed. ACQ
must only be used with a multiple device file. See the section on "Multiple-Device
Files" in the chapter about using WORKSTN files in the RPG/400 User’s Guide.

Chapter 11. Operation Codes 205

ADD

ADD (Add)
Code Factor 1 Factor 2 Result Field Indicators
ADD(¥2) Addend Addend Sum +-Z

If factor 1 is specified, the ADD operation adds it to factor 2 and places the sum in
the result field. If factor 1 is not specified, the contents of factor 2 are added to the
result field and the sum is placed in the result field. Factor 1 and factor 2 must be
numeric and can contain one of: an array, array element, constant, field name,
literal, subfield, or table name. For the rules for specifying an ADD operation, see
“Arithmetic Operations” on page 189.

LN IR, U7/ DU PP DU ST IR DA, UMY ¢ DRPPR U
CLONOINO2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
C=*

Cx The value 1 is added to RECNO.

C ADD 1 RECNO
C* The contents of EHWRK are added to CURHRS.
C ADD EHWRK CURHRS

Cx The contents of OVRTM and REGHRS are added together and
C+ placed in TOTPAY.
C OVRTM ADD REGHRS TOTPAY

Figure 36. ADD Operations

206 RPG/400 Reference

ANDxx (And)

ANDXxX

Code Factor 1 Factor 2 Result Field Indicators
ANDxx Comparand Comparand

T SRS N

If you specify this optional operation, it must immediately follow a ANDxx, DOUXxX,
DOWXxX, IFxx, ORxx, or WHxx operation. With ANDxx, you can specify a complex
condition for the DOUxx, DOWxx, IFxx, and WHxx operations. The ANDxx operation
has higher precedence than the ORxx operation.

The control level entry (positions 7 and 8) can be blank or can contain an L1
through L9 indicator, an LR indicator, or an LO entry to group the statement within
the appropriate section of the program. The control level entry must be the same as
the control level entry for the associated DOUxx, DOWxx, IFxx, or WHxx operation.
Conditioning indicator entries (positions 9 through 17) are not permitted.

Factor 1 and factor 2 must contain a literal, a named constant, a figurative con-
stant, a table name, an array element, a data structure name, or a field name.
Factor 1 and factor 2 must be either both character data or both numeric data. The
comparison of factor 1 and factor 2 follows the same rules as those given for the
compare operations. See “Compare Operations” on page 193.

B B T U A PUL U s PR Ty

CLONOINO2NO3Factorl+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

Cx*

Cx If ACODE is equal to A and indicator 50 is on, the MOVE
Cx and WRITE operations are processed.

C ACODE IFEQ 'A’

C *IN50 ANDEQ*ON

C MOVE 'A' ACREC
C WRITERCRSN

C+ If the previous conditions were not met but ACODE is equal
Cx to A, indicator 50 is off, and ACREC is equal to D, the
C+ following MOVE operation is processed.

ELSE

ACODE IFEQ 'A’
*IN50 ANDEQ*OFF
ACREC ANDEQ'D"

MOVE 'A' ACREC
ENDIF
ENDIF

Figure 37. ANDxx Operations

Chapter 11. Operation Codes 207

BEGSR

BEGSR (Beginn

ing of Subroutine)

Code

Factor 1 Factor 2 Result Field Indicators

BEGSR Subroutine name

208 RPG/400 Reference

The BEGSR operation identifies the beginning of an RPG/400 subroutine. Factor 1
contains the subroutine name. You must specify the same name in factor 2 of the
EXSR operation referring to the subroutine, in the result field of the CASxx operation
referring to the subroutine, or in the entry of an INFSR file continuation option if the
subroutine is a file-error subroutine. The control level entry (positions 7 and 8) can
be SR or blank. Conditioning indicator entries are not permitted.

Every subroutine must have a unique symbolic name. The keyword *PSSR used in
factor 1 specifies that this is a program exception/error subroutine to handle
program-detected exception/errors. Only one subroutine can be defined by this
keyword. *INZSR in factor 1 specifies a subroutine to be run during the initialization
step. Only one subroutine can be defined *INZSR.

See Figure 60 on page 265 for an example of coding subroutines; see “Subroutine
Operations” on page 203 for general information on subroutine operations.

BITOF

BITOF (Set Bits Off)

Code

Factor 1 Factor 2 Result Field Indicators

BITOF

Bit numbers Character field

The BITOF operation causes bits identified in factor 2 to be set off (set to 0) in the
result field. Bits not identified in factor 2 remain unchanged. Therefore, when
using BITOF to format a character, you should use both BITON and BITOF: BITON to
specify the bits to be set on (=1), and BITOF to specify the bits to be set off (=0).
Unless you explicitly set on or off all the bits in the character, you might not get the
character you want.

Factor 2 can contain:

Bit numbers 0-7: From 1 to 8 bits can be set off per operation. They are
identified by the numbers 0 through 7. (O is the leftmost bit.) Enclose the bit
numbers in apostrophes, and begin the entry in position 33. For example, to
set off bits 0, 2, and 5, enter 025’ in factor 2.

Field name: You can specify the name of a one-position character field, table
element, or array element in factor 2. The bits that are on in the field, table
element, or array element are set off in the result field; bits that are off are not
affected.

Hexadecimal literal or named constant: You can specify a 1-byte hexadecimal
literal or hexadecimal named constant. Bits that are on in factor 2 are set off in
the result field; bits that are off are not affected.

Named constant: A character named constant up to eight positions long con-
taining the bit numbers to be set off.

In the result field, specify a one-position character field. It can be an array element
if each element in the array is a one-position character field.

See Figure 38 on page 211 for an example of the BITOF operation.

Chapter 11. Operation Codes 209

BITON

BITON (Set Bits On)
Code Factor 1 Factor 2 Result Field Indicators
BITON Bit numbers Character field

210 RPG/400 Reference

The BITON operation causes bits identified in factor 2 to be set on (set to 1) in the
result field. Bits not identified in factor 2 remain unchanged. Therefore, when
using BITON to format a character, you should use both BITON and BITOF: BITON to
specify the bits to be set on (=1), and BITOF to specify the bits to be set off (=0).
Unless you explicitly set on or off all the bits in the character, you might not get the
character you want.

Factor 2 can contain:

e Bit numbers 0-7: From 1 to 8 hits can be set on per operation. They are
identified by the numbers 0 through 7. (O is the leftmost bit.) Enclose the bit
numbers in apostrophes, and begin the entry in position 33. For example, to
set bits 0, 2, and 5 on, enter ‘025’ in factor 2.

e Field name: You can specify the name of a one-position character field, table
element, or array element in factor 2. The bits that are on in the field, table
element, or array element are set on in the result field; bits that are off are not
affected.

e Hexadecimal literal or named constant: You can specify a 1-byte hexadecimal
literal. Bits that are on in factor 2 are set on in the result field; bits that are off
are not affected.

e Named constant: A character named constant up to eight positions long con-
taining the bit numbers to be set on.

In the result field, specify a one-position character field. It can be an array element
if each element in the array is a one-position character field.

............ Namedconstant+++++++++C
'01234567" C
X'OF' C

BITON

CLONOINO2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

C*
C*
C*
Cx*
Cx*
Cx*
Cx*
C*
C=*
Cx*
Cx*
Cx*

(]

>(.

)(_

OOOOOOOOOOO

Before the operations are processed, the bit settings are:

FLDA
FLDB
FLDC
FLDD
FLDE
FLDF
FLDG
FLDH
FLDI

= 00000000
= 00000000
= 11111111
= 11000000
= 11000000
= 10000001
= 11111111
= 00000000
= 11001010

BITON'04567"'
BITON'3'
BITON'3'
BITON'3'
BITONFLDE
BITONX'0O1'

BITOF'0O'

BITOFBITNC
BITONHEXNC

Figure 38. BITON and BITOF Operations

FLDA
FLDB
FLDC
FLDD
FLDF
FLDH

FLDG

FLDI
FLDI

AFTER

OPERATIONS

10001111
00010000
11111111
11010000
11000001
00000001

01111111

00000000
00001111

Chapter 11. Operation Codes 211

CABXxx

CABxx (Compare and Branch)

Code Factor 1 Factor 2 Result Field Indicators
CABXxx Comparand Comparand Label HI LO EQ

212 RPG/400 Reference

The CABxx operation compares factor 1 with factor 2. If the condition specified by
XX is true, the program branches to the TAG operation associated with the label
specified in the result field. Otherwise, the program continues with the next opera-
tion in the sequence. If the result field is not specified, the resulting indicators
(positions 54-59) are set accordingly, and the program continues with the next
operation in the sequence.

You can specify conditioning indicators. Factor 1 and factor 2 must contain a char-
acter literal, a numeric literal, a named constant, a figurative constant, a field name,
a table name, an array element, or a data structure name. Both the factor 1 and
the factor 2 entries must be character data, or both must be numeric.

The CABxx operation can specify a branch:

e To a previous or a succeeding specification line

¢ From a detail calculation line to another detail calculation line

¢ From a total calculation line to another total calculation line

¢ From a detail calculation line to a total calculation line

e From a subroutine to a detail calculation line or a total calculation line.

The CABxx operation cannot specify a branch from outside a subroutine to a TAG or
ENDSR operation within that subroutine. Branching from one part of the RPG/400
logic cycle to another may result in an endless loop. You must ensure that the
logic of your program does not produce undesirable results. The label specified in
the result field must be associated with a unique TAG operation and must be a
unigue symbolic name.

Resulting indicators are optional. When specified, they are set to reflect the results
of the compare operation. For example, the HI indicator is set when F1>F2, LO is
set when F1<F2, and EQ is set when F1=F2.

See “Compare Operations” on page 193 for the rules for comparing factor 1 with
factor 2.

CABxx

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
C=*

C* The field values are:

Cx FLDA = 100.00

Cx FLDB = 105.00

C* FLDC = ABC

C* FLDD = ABCDE

Cx*

C* Branch to TAGX.

C FLDA CABLTFLDB TAGX

Cx*

C* Branch to TAGX.

C FLDA CABLEFLDB TAGX

Cx*

C* Branch to TAGX; indicator 16 is off.

C FLDA CABLEFLDB TAGX 16
Cx*

C* Branch to TAGX; indicator 17 is off, indicator 18 is on.
C FLDA CAB FLDB TAGX 1718
Cx*

C* Branch to TAGX; indicator 19 is on.

C FLDA CAB FLDA TAGX 19
Cx*

C* No branch occurs.

C FLDA CABEQFLDB TAGX

Cx*

C* No branch occurs; indicator 20 is on.

C FLDA CABEQFLDB TAGX 20
Cx*

Cx No branch occurs; indicator 21 is off.

C FLDC CABEQFLDD TAGX 21

C TAGX TAG

Figure 39. CABxx Operations

Chapter 11. Operation Codes 213

CALL

CALL (Call a Program)

Code Factor 1 Factor 2 Result Field Indicators
CALL Program name Plist name _ERLR

214 RPG/400 Reference

The CALL operation passes control to the program specified in factor 2.

Factor 2 must contain a character entry specifying the name of the program to be
called. If you specify the library name, it must be immediately followed by a slash
and then the program name (for example, 'LIB/PROG'.). Factor 2 must contain the
name of a field, a literal, a named constant, or an array element that contains the
name of the program to be called and that optionally contains the name of the
library in which the program is located. If a library is not specified, the library list is
used to find the program.

The total length of a literal, including the slash, cannot exceed 8 characters. The
total length of a field or named constant, including the slash, cannot exceed 21
characters. If either the program or the library name exceeds 10 characters, it is
truncated to 10 characters. The program name is used exactly as specified in the
literal, field, named constant, or array element to determine the program to be
called. Any blanks found before or after the slash are included in the program or
library name. If the first or last character in the entry is a slash, a blank library or
program name, respectively, is assumed. (Lowercase characters are not shifted to
uppercase. A name enclosed in quotation marks, for example, “ABC”, always
includes the quotation marks as part of the name of the program to be called.)
*LIBL and *CURLIB are not supported.

For System/38 Environment programs, if you specify the library name for the called
program, the program name must be immediately followed by a period and then the
library name.

Program references are grouped to avoid the overhead of resolving to the target
program. All references (using a CALL or FREE operation) to a specific program
using a named constant or literal are grouped so that the program is resolved to
only once, and all subsequent references to that program (by way of nhamed con-
stant or literal only) do not cause a resolve to recur.

The references are grouped if both the program and the library name are identical.
All program references by variable name are grouped by the variable name. When
a program reference is made with a variable, its current value is compared to the
value used on the previous program reference operation that used that variable. If
the value did not change, no resolve is done. If it did change, a resolve is done to
the new program specified. If your program depends on a resolve taking place on
a reference by variable name, code a FREE operation using that variable name.
This causes a subsequent reference, using that variable, to resolve to the program
whether or not the value has changed. Note that this rule applies only to refer-
ences using a variable name. References using a named constant or literal are
never re-resolved, and they do not affect whether or not a program reference by
variable is re-resolved. Figure 40 on page 215 illustrates the grouping of program
references.

CALL

Namedconstant+++++++++C......... Fldnme.........
I 'LIB1/PGM1’ C CALLA

I 'PGM1' C CALLB

I 'LIB/PGM2' C CALLC

I*

P I R S IR DU ' SAPRUINE U DUPIPUNE. PR ¢ PP Sy A

CLONOINOZ2NO3Factorl+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
Cx*

c CALL CALLA

Cx*

Cx The following two calls will be grouped together because both

C* have the same program name (PGM1) and the same library name

C+x (none). Note that these will not be grouped with the call using
C* CALLA above because CALLA has a different library name specified

Cx (LIB1).

C*

C CALL 'PGM1'
C CALL CALLB
Cx*

Cx The following two program references will be grouped together
C* because both have the same program name (PGM2) and the same
C* library name (LIB).

C=*

C CALL 'LIB/PGM2'
C FREE CALLC

Cx*

Figure 40 (Part 1 of 2). Example of Grouping of Program References

Chapter 11. Operation Codes 215

CALL

* .

Cx*
Cx*
Cx*
C*
C*
C*
Cx*
Cx*
Cx*
Cx*
C*
C=*
Cx*
C

OOOO

R P2 P DR Y. U . DUPRP RPN ¢ DU, PP A

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

The first call in the program using CALLV below will result in

a resolve being done for the variable CALLV to the program PGML.
This is independent of any calls by a literal or named constant
to PGM1 that may have already been done in the program. The
second call using CALLV will not result in a resolve to PGM1
because the value of CALLV has not changed. The call following
the free operation will result in a resolve taking place because
the free operation will force that to occur. Note that the free
operation itself will not result in a resolve occurring. (That
is, that operation will use the current program object pointer
for calls using variable CALLV.)

MOVE 'PGM1' CALLV 21
CALL CALLV
CALL CALLV
FREE CALLV
CALL CALLV

Figure 40 (Part 2 of 2). Example of Grouping of Program References

216

In the result field, specify the name of a PLIST to communicate values between the
calling program and the called program. The result field can be blank if the called
program does not access parameters or if the PARM statements directly follow the
CALL operation.

Positions 54 and 55 must be blank. Any valid resulting indicator can be specified in
positions 56 and 57 to be set on for an error returned from the called program and
in positions 58 and 59 to be set on if the called program is an RPG/400 program
that returns with the LR indicator on.

The DSPPGMREF command is a CL command that is used to display information
about the external references made by a program. A referenced program is refer-
enced on a CALL operation only. Using DSPPGMREF, you can query the names of
programs called by way of named constants or literals. To make this information
available to DSPPGMREF, recompile your program.

Figure 41 on page 217 illustrates the use of the CALL operation.

RPG/400 Reference

CALL

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

Cx*
Cx*
Cx*
C*
C*
C*
Cx*
C

C

C

The CALL operation calls PROGA and allows PROGA to access

FLDA and FLDB, defined elsewhere. PROGA is processed using the
contents of FLDA and FLDB. After PROGA is processed, control
returns to the next statement to be processed after the last
PARM statement.

CALL 'PROGA'
PARM FLDA
PARM FLDB

Figure 41. CALL Operation

Chapter 11. Operation Codes 217

CASXxx

CASxx (Conditionally Invoke Subroutine)

Code Factor 1 Factor 2 Result Field Indicators
CASxx Comparand Comparand Subroutine HI LO EQ
name

218 RPG/400 Reference

The CASxx operation allows you to conditionally select a subroutine for processing.
The selection is based on the relationship between factor 1 and factor 2, as speci-
fied by xx. If the relationship denoted by xx exists between factor 1 and factor 2,
the subroutine specified in the result field is processed.

You can specify conditioning indicators. Factor 1 and factor 2 can contain a literal,
a named constant, a figurative constant, a field name, a table name, an array
element, a data structure name, or blanks (blanks are valid only if xx is blank and
no resulting indicators are specified in positions 54 through 59). If factor 1 and
factor 2 are not blanks, both must be character data, or both must be numeric. In a
CASbb operation, factor 1 and factor 2 are required only if resulting indicators are
specified in positions 54 through 59.

The result field must contain the name of a valid RPG/400 subroutine, including
*PSSR, the program exception/error subroutine, and *INZSR, the program initializa-
tion subroutine. If the relationship denoted by xx exists between factor 1 and factor
2, the subroutine specified in the result field is processed. If the relationship
denoted by xx does not exist, the program continues with the next CASxx operation
in the CAS group. A CAS group can contain only CASxx operations. An ENDCS opera-
tion must follow the last CASxx operation to denote the end of the CAS group. After
the subroutine is processed, the program continues with the next operation to be
processed following the ENDCS operation, unless the subroutine passes control to a
different operation.

The CASbb operation with no resulting indicators specified in positions 54 through 59
is functionally identical to an EXSR operation, because it causes the unconditional
running of the subroutine named in the result field of the CASbb operation. Any
CASxx operations that follow an unconditional CASbb operation in the same CAS
group are never tested. Therefore, the normal placement of the unconditional
CASbb operation is after all other CASxx operations in the CAS group.

You cannot use conditioning indicators on the ENDCS operation for a CAS group.

See “Compare Operations” on page 193 for further rules for the CASxx operation.

CASXxx

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

Cx*
Cx*
Cx*
C*
C*
C

Cx*
Cx*
Cx*
Cx*
C*
C=*
C

Cx*
Cx*
Cx*
C*
C*
Cx*
Cx*
C

Cx*
C*
C*
C

The CASGE operation compares FIELDA with FIELDB. If FIELDA is
greater than or equal to FIELDB, SUBRO1 is processed and the
program continues with the operation after the ENDCS operation.

FIELDA CASGEFIELDB SUBRO1

If FIELDA is not greater than or equal to FIELDB, the program
next compares FIELDA with FIELDC. If FIELDA is equal to FIELDC,
SUBRO2 is processed and the program continues with the operation
after the ENDCS operation.

FIELDA CASEQFIELDC SUBRO2
If FIELDA is not equal to FIELDC, the CAS operation causes SUBRO3
to be processed before the program continues with the operation
after the ENDCS operation.
The CAS statement is used to provide a subroutine if none of
the previous CASxx operations have been met.

CAS SUBRO3

The ENDCS operation denotes the end of the CAS group.

ENDCS

Figure 42. CASxx Operation

Chapter 11. Operation Codes 219

CAT

CAT (Concatenate Two Character Strings)

Code Factor 1 Factor 2 Result Field Indicators
CAT (p) Source string 1 Source string 2: number of Target string
blanks

220 RPG/400 Reference

The CAT operation concatenates the character string specified in factor 2 to the end
of the character string specified in factor 1 and places it in the result field. If no
factor 1 is specified, factor 2 is concatenated to the end of the result field string.

Factor 1 can contain a character string, which can be one of: a field name, array
element, named constant, data structure name, table name, or literal. If factor 1 is
not specified, the result field is used. In the following discussion, references to
factor 1 apply to the result field if factor 1 is not specified.

Factor 2 must contain a character string, and may contain the number of blanks to
be inserted between the concatenated strings. Its format is the character string,
followed by a colon, followed by the number of blanks. The character string portion
can contain one of: a field name, array element, named constant, data structure
name, table name, literal, or data structure subfield name. The number of blanks
portion must be numeric with zero decimal positions, and can contain one of: a
named constant, array element, literal, table name, or field name.

If a colon is specified, the number of blanks must be specified. If no colon is speci-
fied, concatenation occurs with the trailing blanks, if any, in factor 1, or the result
field if factor 1 is not specified.

If the number of blanks, N, is specified, factor 1 is copied to the result field left-
justified. If factor 1 is not specified the result field string is used. Then N blanks
are added following the last nonblank character. Then factor 2 is appended to this
result. Leading blanks in factor 2 are not counted when N blanks are added to the
result; they are just considered to be part of factor 2.

If the number of blanks is not specified, the trailing and leading blanks of factor 1
and factor 2 are included in the result. If the number of blanks is specified,
however, the trailing blanks of factor 1 are ignored and only as many blanks as
specified are included in the result between the last nonblank character in factor 1
and the first character of factor 2. Leading blanks in factor 2 are always included.
For example, if you have:

C '"DMIKEDD' CAT 'bHbSMITHb':1 Name
the value of the result field after this statement is executed is:
"BPMIKEDDHSMITHD

Note: The leading blanks in factors 1 and 2 and the trailing blanks in factor 2 are
placed in the result unchanged. Since one was specified as the number of blanks,
factor 1 was copied left justified to the result field, a blank was added following the
rightmost nonblank character, and factor 2 was appended to the result. Since
factor 2 had two leading blanks, the total number of blanks between the two now
concatenated fields is three.

The result field must be character, and can contain one of: a field name, array
element, data structure name, or table name. Its length should be the length of

CAT

factor 1 and factor 2 combined plus any intervening blanks; if it is not, truncation
occurs from the right.

A P specified in the operation extender field (position 53) indicates that the result
field should be padded on the right with blanks after the concatenation occurs if the
result field is longer than the result of the operation. If padding is not specified,
only the leftmost part of the field is affected.

At run time, if the number of blanks is fewer than zero, the compiler defaults the
number of blanks to zero.

Figurative constants cannot be used in the factor 1, factor 2, or result fields. No

overlapping is allowed in a data structure for factor 1 and the result field, or for
factor 2 and the result field.

Chapter 11. Operation Codes 221

CAT

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

Cx*
Cx*
Cx*
C
C
C
Cx*
Cx*
C
C
C*
C=*
Cx*
Cx*
Cx*
Cx*
C*
C
C
C
Cx*
Cx*
C*
C
C
C*
Cx*
Cx*
C
C
C
C

CAT concatenates LAST to NAME and inserts one blank as specified
in factor 2. TEMP contains 'Mr.bSmith'.

MOVE 'Mr. ' NAME 6
MOVE 'Smith ' LAST 6
NAME CAT LAST:1 TEMP 9

CAT concatenates 'RPG' to STRING and places 'RPG/400' in TEMP.
MOVE '/400' STRING 4
'"RPG' CAT STRING TEMP 7

The following example is the same as the previous example except
that TEMP is defined as a 10 byte field. P in position 53
specifies that blanks will be used in the rightmost positions
of the result field that the concatenation result, 'RPG/400',
does not fill. As a result, TEMP contains 'RPG/400bbb'
after concatenation.

MOVE =ALL'*' TEMP 10

MOVE '/400' STRING 4

'RPG' CAT STRING TEMP P

After this CAT operation, the field TEMP contains 'RPG/4'.
Because the field TEMP was not large enough, truncation occurred.
MOVE '/400' STRING 4
'RPG' CAT STRING TEMP 5

Note that the trailing blanks of NAME are not included because
NUM=0. The field TEMP contains 'RPGIIIbbbb'.

MOVE 'RPG ' NAME 5

MOVE 'III ' LAST 5

Z-ADDO NUM 10
NAME CAT LAST:NUM TEMP 10P

Figure 43. CAT Operation

222

RPG/400 Reference

CAT

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

Cx*
Cx*
Cx*
C*
C

C

C

Cx*
Cx*
Cx*
C*
C=*
Cx*

The following example shows leading blanks in factor 2. After
the CAT, the RESULT contains 'MR.HbSMITH'.

MOVE 'MR.' NAME 3
MOVE ' SMITH' FIRST 6
NAME CAT FIRST RESULT 9

The following example shows the use of CAT without factor 1.
FLD2 is a 9 character string. Prior to the concatenation, it
contains 'ABCbbbbbb'; FLD1 contains 'XYZ'.

After the concatenation, FLD2 contains 'ABCbbXYZb'.

CLONO1INO2NO3Factorl+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

C
C
C

MOVEL'ABC' FLD2 9P
MOVE 'XYZ' FLD1 3
CAT FLD1:2 FLD2

Figure 44. CAT Operation

Chapter 11. Operation Codes 223

CHAIN

CHAIN (Random Retrieval from a File)

Code Factor 1 Factor 2 Result Field Indicators
CHAIN (n) Search argument File name Data structure NR ER _

224

RPG/400 Reference

The CHAIN operation retrieves a record from a full procedural file (F in position 16 of
the file description specifications), sets a record identifying indicator on (if specified
on the input specifications), and places the data from the record into the input
fields.

Factor 1, the search argument, must contain the key or relative record number
used to retrieve the record. If access is by key, factor 1 can be a field name, a
named constant, a figurative constant, or a literal. In addition, a “KLIST (Define a
Composite Key)” name can be specified in factor 1 for an externally described file.
If access is by relative record number, factor 1 must contain an integer literal or a
numeric field with zero decimal positions.

Factor 2 specifies the file or record format name that is to be read. A record format
name is valid with an externally described file. If factor 2 is a file name and access
is by key, the CHAIN operation retrieves the first record that matches the search
argument.

If factor 2 is a record format name and access is by key, the CHAIN operation
retrieves the first record of the specified record type whose key matches the search
argument. If no record is found of the specified record type that matches the
search argument, a no-record-found condition exists.

You can specify a data-structure name in the result field only if the file named in
factor 2 is a program described file (identified by an F in position 19 of the file
description specification). When you specify a data-structure name in the result
field, the CHAIN operation retrieves the first record whose record identifier matches
the search argument in factor 1 and places it in the data structure. See “File
Operations” on page 196 for information on transferring data between the file and
the data structure.

For a WORKSTN file, the CHAIN operation retrieves a subfile record.

For a multiple device file, you must specify a record format in factor 2. Data is read
from the program device identified by the field specified in the ID entry of the file
specifications continuation line. If there is no such entry, data is read from the
device for the last successful input operation to the file.

If the file is specified as INPUT, all records are read without locks and position 53
must be blank. If the file is specified as UPDATE, all records are locked if position
53 is blank.

If you are reading from an update disk file, you can specify an N in position 53 to
indicate that no lock should be placed on the record when it is read. See the
RPG/400 User’s Guide for more information.

Positions 54 and 55 must contain an indicator that is set on if no record in the file
matches the search argument. Positions 56 and 57 can contain an indicator to be

* .

C=*
C*
Cx*
Cx*
C*
c

C*
Cx*
Cx*
Cx*
C*
C*
Cx*
C=*
C

CHAIN

set on if the CHAIN operation is not completed successfully. Positions 58 and 59
must be blank.

When the CHAIN operation is successful, the file specified in factor 2 is positioned
such that a subsequent read operation retrieves the next sequential record fol-
lowing the retrieved record. When the CHAIN operation is not completed success-
fully (for example, an error occurs or no record is found), the file specified in factor
2 must be repositioned (for example, by a CHAIN or SETLL operation) before a sub-
sequent read operation can be done on that file.

If an update (on the calculation or output specifications) is done on the file specified
in factor 2 immediately after a successful CHAIN operation to that file, the last record
retrieved is updated.

R R TN, . FUPIE. R S I PUME AP ¢ DRV R AR
CLONOINO2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

The CHAIN operation retrieves the first record from the file,
FILEX, that has a key field with the same value as the search
argument KEY (factor 1).

KEY CHAINFILEX 60 INDICATOR 60
IF NOT FOUND

If a record with a key value equal to the search argument is not
found, indicator 60 is set on and the GOTO operation conditioned
by indicator 60 is processed. If a record is found with a key
value equal to the search argument, the program continues with
the calculations after the GOTO operation.

60 GOTO NOTFND

Figure 45. CHAIN Operation with a File Name in Factor 2

Chapter 11. Operation Codes 225

CHAIN

CLONOINO2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
Cx*

Cx The CHAIN operation uses the value contained in the search

C+ argument KEY to retrieve a record of the record type REC1 from
Cx an externally described file. If no record is found of the

C+ specified type that has a key field equal to the search

C+x argument, indicator 72 is set on. A complex key with a KLIST is
C+ wused to retrieve records from files that have a composite key.
C+x If a record of the specified type is found that has a key field
C* equal to the search argument, the calculations after the GOTO

C+ operation are processed.

C*

C KEY CHAINREC1 72 INDICATOR 72
C* IF NOT FOUND
C KEY KLIST

C KFLD FLD1

C KFLD FLD2

C *IN72 IFEQ *OFF

C*

CLONOINO2NO3Factorl+++OpcdeFactorZ2+++ResultLenDHHiLoEqComments++++++
C=*

C* The UPDAT operation modifies all the fields in the REC1 record.
Cx*

C UPDATREC1 UPDATE
C ENDIF
Cx*

CLONOINO2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
C=*

Cx The following example shows a CHAIN with no lock.

Cx*

C MOVE 3 KEY

C KEY CHAININPUT N

Figure 46. CHAIN Operation with a Record Format Name and with No Lock

226 RPG/400 Reference

CHECK

CHECK (Check Characters)

Code

Factor 1 Factor 2 Result Field Indicators

CHECK

Comparator string Base string:start Left-position _ERFD

The CHECK operation verifies that each character in the base string (factor 2) is
among the characters indicated in the comparator string (factor 1). Verifying begins
at the leftmost character of factor 2 and continues character by character, from left
to right. Each character of the base string is compared with the characters of factor
1. If a match for a character in factor 2 exists in factor 1, the next base string
character is verified. If a match is not found, an integer value is placed in the result
field to indicate the position of the incorrect character.

You can specify a start position in factor 2, separating it from the base string by a
colon. The start position is optional and defaults to 1. If the start position is
greater than 1, the value in the result field is relative to the leftmost position in the
base string, regardless of the start position.

The operation stops checking when it finds the first incorrect character or when the
end of the base string is encountered. If no incorrect characters are found, the
result field is set to zero.

If the result field is an array, the operation continues checking after the first incor-
rect character is found for as many occurrences as there are elements in the array.
If there are more array elements than incorrect characters, all of the remaining ele-
ments are set to zeros.

Factor 1 must be character, and can contain one of: a field name, array element,
named constant, data structure name, data structure subfield, literal, or table name.

Factor 2 must contain either the base string or the base string, followed by a colon,
followed by the start location. The base string portion of factor 2 must be char-
acter, and can contain: a field name, array element, named constant, data-structure
name, literal, or table name. The start location portion of factor 2 must be numeric
with no decimal positions, and can be a named constant, array element, field name,
literal, or table name. If no start location is specified, a value of 1 is used.

The result field can be a numeric variable, numeric array element, numeric table
name, or numeric array. Define the field or array specified with no decimal posi-
tions. The result field is an optional field; if you do not specify it, you must specify
the found indicator in position 58-59.

Figurative constants cannot be used in the factor 1, factor 2, or result fields. No
overlapping is allowed in a data structure for factor 1 and the result field or for
factor 2 and the result field.

Any valid indicator can be specified in positions 7 to 17.

The indicator in positions 56-57 is turned on if an error occurs. The indicator in
positions 58-59 is turned on if any incorrect characters are found.

Chapter 11. Operation Codes 227

CHECK

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
Cx*

C* Because factor 1 is a blank, CHECK indicates the position

Cx of the first nonblank character. If STRING contains 'bbbthe',

C* NUM will contain the value 4.

C*

C ' CHECKSTRING NUM 20

L R AP ARG DUPURPE RPN SR AP SRPRPI PP o DAURPITE U A
Namedconstant+++++++++C......... Fldnme.........
I*

I[* After the following example, N=6 and the found indicator 90
I[* is on. Because the start position is 2, the first nonnumeric
I* character found is the '.'.

I*
I '0123456789' C DIGITS
N I AT . DUPIPIN U SR ST AP AP ¢ DA Y A

CLONOINO2NO3Factorl+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
C*

c MOVE '$2000.' SALARY

c DIGITS CHECKSALARY:2 N 920

Figure 47. CHECK Operation

I* The following example checks that FIELD contains only the letters
I* A to J. As a result, ARRAY=(136000) after the CHECK operation.
I* Indicator 90 turns on.

I*
I "ABCDEFGHIJ' c LETTER
oI R R TP IR | S BT, TAPRPUE. R ;DU Y A

CLONOINO2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
Cx*

C MOVE '1A=BC*' FIELD 6
C LETTER CHECKFIELD ARRAY 90
C*

Cx In the following example, because FIELD contains only the
Cx letters A to J, ARRAY=(000000). Indicator 90 turns off.
Cx*

C MOVE 'FGFGFG' FIELD 6

C LETTER CHECKFIELD ARRAY 90

Figure 48. CHECK Operation

228 RPG/400 Reference

CHEKR

CHEKR (Check Reverse)

Code

Factor 1 Factor 2 Result Field Indicators

CHEKR

Comparator string Base string:start Right-position _ERFD

The CHEKR operation verifies that each character in the base string (factor 2) is
among the characters indicated in the comparator string (factor 1). Verifying begins
at the rightmost character of factor 2 and continues character by character, from
right to left. Each character of the base string is compared with the characters of
factor 1. If a match for a character in factor 2 exists in factor 1, the next source
character is verified. If a match is not found, an integer value is placed in the result
field to indicate the position of the incorrect character. Although checking is done
from the right, the position placed in the result field will be relative to the left.

You can specify a start position in factor 2, separating it from the base string by a
colon. The start position is optional and defaults to the length of the string. The
value in the result field is relative to the leftmost position in the source string,
regardless of the start position.

If the result field is not an array, the operation stops checking when it finds the first
incorrect character or when the end of the base string is encountered. If no incor-
rect characters are found, the result field is set to zero.

If the result field is an array, the operation continues checking after the first incor-
rect character is found for as many occurrences as there are elements in the array.
If there are more array elements than incorrect characters, all of the remaining ele-
ments are set to zeros.

Factor 1 must be character, and can contain one of: a field name, array element,
named constant, data structure name, data structure subfield, literal, or table name.

Factor 2 must contain either the base string or the base string, followed by a colon,
followed by the start location. The base string portion of factor 2 must be char-
acter, and can contain: a field name, array element, named constant, data structure
name, data structure subfield name, literal, or table name. The start location
portion of factor 2 must be numeric with no decimal positions, and can be a named
constant, array element, field name, literal, or table name. If no start location is
specified, the length of the string is used.

The result field can be a numeric variable, numeric array element, numeric table
name, or numeric array. Define the field or array specified with no decimal posi-
tions. The result field is an optional field; if you do not specify it, you must specify
the found indicator in position 58-59.

Figurative constants cannot be used in the factor 1, factor 2, or result fields. No
overlapping is allowed in a data structure for factor 1 and the result field, or for
factor 2 and the result field.

Any valid indicator can be specified in positions 7 to 17.

The indicator in positions 56-57 is turned on if an error occurs. The indicator in
positions 58-59 is turned on if any incorrect characters are found.

Chapter 11. Operation Codes 229

CHEKR

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
Cx*

Cx Because factor 1 is a blank character, CHEKR indicates the

C* position of the first nonblank character. This use of CHEKR

Cx allows you to determine the length of a string. If STRING

C+ contains 'ABCDEF ', NUM will contain the value 6.

C ' CHEKRSTRING NUM 20

LI R AP JUDARPIG DUPIPRPE DUV SR DD SRURPIE SAPIPI o DARPRTE SR A
Namedconstant+++++++++C......... Fldnme.........
I*

[After the following example, N=1 and the found indicator 90
I* is on. Because the start position is 5, the operation begins
I* with the rightmost 0 and the first nonnumeric found is the '$'.

I '0123456789" C DIGITS

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
C*

C MOVE '$2000.' SALARY 6
C DIGITS CHEKRSALARY:5 N 90
Ex

Ex The following example checks that FIELD contains only the Tetters
Ex A to J. As a result, ARRAY=(876310) after the CHEKR operation.
Ex Indicator 90 turns on.

Ex*

E....FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments

E ARRAY 6 10
Namedconstant+++++++++C......... Fldnme.........
I 'ABCDEFGHIJ' C LETTER

N [AT R RPN R SR ST . DAV AP ¢ DA Y A

CLONOINO2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
C*

C MOVE '1A=BCx**'FIELD 8

C LETTER CHEKRFIELD ARRAY 90

Figure 49. CHEKR Operation

230 RPG/400 Reference

CLEAR

CLEAR (Clear)

Code Factor 1 Factor 2 Result Field Indicators

CLEAR *NOKEY Structure or Variable

The CLEAR operation sets elements in a structure (record format, data structure,
array, or table) or a variable (field, subfield, or indicator), to zero, blank or '0",
depending on field type (humeric, character, or indicator). It allows you to clear

structures on a global basis, as well as element by element, during run time.

Factor 1 must be blank unless factor 2 contains a DISK record format name; in

which case, it can contain *NOKEY to indicate that all fields except key fields are to

be cleared.

Factor 2 contains the structure or variable that is set to zero, blank, or '0'. It can
contain: a record-format name, data-structure name, array name, table name, field
name, subfield, array element, or indicator name. If you specify a record-format
name or data structure, all fields are cleared in the order they are defined within the
structure. If you have partially overlapping fields of different definitions, data that is
not valid could exist in numeric fields. With a multiple-occurrence data structure,
only those fields in the current occurrence are cleared. If you specify a table name,
the current table element is cleared; if an array name, the entire array is cleared. If
you specify an array element (including indicators) in factor 2 using an array index,

only the element specified is cleared.

Note that when the CLEAR operation is applied to a record-format name, only output
fields in the record format are affected. For WORKSTN file record formats, only fields

with a usage of output or both are affected. All field-conditioning indicators are
affect by this operation. Fields in DISK, SEQ, or PRINTER file record formats are

affected only if those record formats are output in the program. Input-only fields
are not affected by the CLEAR operation. By definition, they assume new values at

the next input operation.

For more information see “Initialization” in Chapter 10 of the RPG/400 User’s
Guide.

2N I AN AU DUPIPUPE AP SRR PP DU U | DAV DU A
et iiiieeeeaeeeeeeennnnnees . PFromTo++DField+LIMIFrPIMnZr...
I*

I* In the following example, CLEAR sets all subfields in the data
I* structure DS1 to their defaults, CHAR to blank, NUM to zero.
IDS1 DS

I 2 50NUM

I 20 30 CHAR

L . - U DUPIPIDE. DA SUPE ST DUV AP - DRPRPAPE R A
CLONOINO2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
Cx*

C CLEARDS1

Figure 50. CLEAR Operation

Chapter 11. Operation Codes

231

CLEAR

Figure 51 on page 232 shows an example of the field initialization for the CLEAR
record format.

Ax FLD1 and FLD2 are defined as output fields and can be

A affected by the CLEAR operation. Indicator 10 can also be

A* changed by the CLEAR operation even though it conditions an

Ax input only field because field indicators are all treated

Ax as output fields.

Ax*
AANOINOZNO3T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++%
A R FMTO1

A 10 FLD1 10A I 2 30

A FLD2 10A 0 3 30

A FLD3 10A B 4 30

7N IO A S DUPIPIPE. DU SUPUINIE. PUDIDE. DU U ¢ DUVRPE DAY AR
FFilenameIPEAF....R1enLK1AIOvKlocEDevice+...... KExit++Entry+A....Ul.
FWORKSTN CF E WORKSTN

2N I AR AN AU DUPIPIPE AP SUPN SUPUPIIE . DU R ¢ AT S A
Namedconstant+++++++++C......... Fldnme.........
I "INPUT DATA' C IN

I I AN, AP DAL U SO U DU U ¢ DUVIPE DAY A

CLONOINO2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
c CLEARFMTO1

C WRITEFMTO1

Cx*

Cx The program will loop until PFO3 is pressed.

Cx*

C *INO3 DOWEQ'0'

C READ FMTO1 LR
C*

Cx PFO4 will transfer input fields to output fields.
Cx*

C *INO4 IFEQ '1'

C MOVELFLD0O3 FLDOO2

C MOVELFLD00O1 FLDOO3

c CLEAR*INO4

C ENDIF

C MOVELIN FLDOO1

Cx*

232 RPG/400 Reference

CLEAR

C* When PF11 is pressed, all the fields in the record format
Cx defined as output or both will be reset to the values they
C* held after the initialization step.

Cx*

C *IN11 IFEQ '1'

C RESETFMTO1
C CLEAR*IN11
C ENDIF

Cx When PF12 is pressed, all the fields in the record
Cx format defined as output or both will be cleared.

c *IN12 IFEQ '1'
CLEARFMTO1
CLEAR*IN12
ENDIF
NO3 WRITEFMTO1
ENDDO
SETON LR

Figure 51 (Part 2 of 2). Field Initialization for the CLEAR Record Format

OOOOOO

Chapter 11. Operation Codes 233

CLOSE

CLOSE (Close Files)

Code

Factor 1 Factor 2 Result Field Indicators

CLOSE

File name ER _

L I

The explicit CLOSE operation closes one or more files or devices and disconnects
them from the program. The file cannot be used again in the program unless you
specify an explicit OPEN for that file. A CLOSE operation to an already closed file
does not produce an error.

Factor 2 names the file to be closed. You can specify the keyword *ALL in factor 2
to close all the files at once. You cannot specify an array or table file (identified by
a T in position 16 of the file description specifications) in factor 2.

You can specify a resulting indicator in positions 56 and 57 to be set on if the CLOSE
operation is not completed successfully. Positions 54, 55, 58, and 59 must be
blank.

Multiple CLOSE operations to a file already closed are valid. A second close to the
same file has no effect on that file.

If an array or table is to be written to an output file (specified in positions 19
through 26 of the extension specifications), the array or table dump does not occur
if the file is closed (by a CLOSE operation) at LR time when the file is written. If the
file is closed, it must be reopened for the dump to occur.

I I P U JUE . T P I Ty A

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

C*

Cx The explicit CLOSE operation closes FILEB.

C=*
C
Cx*

CLOSEFILEB

Cx The explicit CLOSE *ALL operation closes all files in the

C* program. To reopen the files, you must specify an explicit
Cx OPEN for each file. If the CLOSE operation is not completed
Cx completed successfully, indicator 17 is set on and the

C* program branches to the label specified in the GOTO statement.

C CLOSE*ALL 17

c 17 GOTO NOCOMP CLOSE FAILED
C :

C :

C :

C NOCOMP TAG

Figure 52. CLOSE Operation

234 RPG/400 Reference

COMIT

COMIT (Commit)

Code

Factor 1 Factor 2 Result Field Indicators

COMIT

Boundary ER

The COMIT operation:

* Makes all the changes to your files that have been specified in output oper-
ations since the previous COMIT or “ROLBK (Roll Back)” operation (or since the
beginning of operations under commitment control if there has been no pre-
vious COMIT or ROLBK operation).

* Releases all the record locks for files you have under commitment control.

The file changes and the record-lock releases apply to all the files you have under
commitment control, whether the changes have been requested by the program
issuing the COMIT operation, or by another program in the same routing step. The
program issuing the COMIT operation does not need to have any files under commit-
ment control. The COMIT operation does not change the file position.

Commitment control starts when the COMIT operation is executed or when the CL
command STRCMTCTL is executed. See the chapter on “Commitment Control” in the
RPG/400 User’s Guide for more information.

In factor 1, you can specify a literal, named constant, array element, table name,
data structure, or data structure subfield to identify the boundary between the
changes made by this COMIT operation and subsequent changes. If you leave
factor 1 blank, the identifier is null.

The optional indicator in positions 56 and 57 is set on if the operation is not com-

pleted successfully. For example, the indicator is set on if commitment control is
not active.

Chapter 11. Operation Codes 235

COMP

COMP (Compare)

Code

Factor 1 Factor 2 Result Field Indicators

COMP

Comparand Comparand HI LO EQ

*

B R

The COMP operation compares factor 1 with factor 2. Factor 1 and factor 2 can
contain a literal, a named constant, a field name, a table name, an array element, a
data structure, or a figurative constant. Factor 1 and factor 2 must be either both
character or both numeric. As a result of the comparison, indicators are set on as
follows:

High: (54-55) Factor 1 is greater than factor 2.
Low: (56-57) Factor 1 is less than factor 2.
Equal: (58-59) Factor 1 equals factor 2.

You must specify at least one resulting indicator in positions 54 through 59. Do not
specify the same indicator for all three conditions. When specified, the resulting
indicators are set on or off (for each cycle) to reflect the results of the compare.

For further rules for the COMP operation, see “Compare Operations” on page 193.

R . P T SO S DA T AP Y A

CLONOINO2NO3Factorl+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

C*
Cx*
Cx*
C*
C*
Cx*
C*
Cx*
Cx*
C

C*
C=*
C

Cx*
Cx*
C

C*
Cx*
C

Initial field values are:

FLDA = 100.00

FLDB = 105.00
FLDC = 100.00
FLDD = ABC

FLDE = ABCDE

Indicator 12 is set on; indicators 11 and 13 are set off.

FLDA COMP FLDB 111213

Indicator 15 is set on; indicator 14 is set off.

FLDA COMP FLDB 141516

Indicator 19 is set on; indicator 17 is set off.

FLDA COMP FLDC 171819

Indicator 21 is set on; indicators 20 and 22 are set off

FLDD COMP FLDE 202122

Figure 53. COMP Operation

236

RPG/400 Reference

DEBUG

DEBUG (Debug Function)

Code

Factor 1 Factor 2 Result Field Indicators

DEBUG

Identifier Output file Debug info

The DEBUG operation helps the programmer debug a program that is not working
properly. One or more records containing information helpful for finding program-
ming errors are written as a result of this operation. You can use the DEBUG opera-
tion independently of or in combination with the 0S/400 testing and debugging
functions.

You can specify the operation at any point or at several points in the calculation
specifications. Whenever the program encounters the DEBUG operation, one or
more records are written. The first record contains the source-statement sequence
number of the DEBUG operation in the program, factor 1 if any, and a list of all indi-
cators that were on at the time the DEBUG operation was encountered. It can
contain the contents of a field, an array element, a table element, or a literal that
identifies the written information that describes the DEBUG operation. The contents
of factor 1 identify the written information that describes the DEBUG operation. It can
contain a field name, an array element, a table name, a named constant, or a
literal. The length of the specified field can be from 1 to 8 characters. Factor 1
cannot contain a figurative constant. If factor 1 contains an entry, the sequence
number and the contents of the entry are written to the first record. If factor 1 is
not used, the source statement sequence number of the DEBUG operation is written
to the first record.

Factor 2 can contain the name of the output file to which the DEBUG output is
written. This file must have a record length of at least 80 positions. Only program-
defined output files are allowed with the DEBUG operation; externally described files
are not permitted. If factor 2 is blank, the output goes to the display work station
that requested the program (the requester). The same entry must appear in factor
2 of all DEBUG operations in a program.

The contents of the result field are written to a separate record. The result field
can contain a field name, an array name, a table name, or a “KLIST (Define a
Composite Key)” name.

If factor 1 and the result field are not specified, only the indicators and the source
statement sequence number of the DEBUG operation are written.

Note: If a KLIST is specified in the result field of a DEBUG operation, all numeric
fields in the KLIST are printed or displayed in zoned decimal format.

The DEBUG operation is performed only if a 1 is specified in position 15 of the control
specification. Otherwise, the DEBUG statement is checked for errors at compile time,
but the DEBUG operation is not processed at run time.

Records Written for DEBUG
For a DEBUG operation, one record is always written in the following format:

Positions Information
1-8 DEBUG=

Chapter 11. Operation Codes 237

DEBUG

238

RPG/400 Reference

9-16

17-18
19-26
27

28
29-43
44

45-47, ...

Source statement sequence number of the DEBUG operation code in
the program. This entry permits you to identify the individual DEBUG
operation (if more than one is used) without making an entry in factor
1.

Blank.

Contents of factor 1, if specified.

Minus (-) sign if factor 1 contains a negative value. Blank if factor 1
contains a positive value.

Blank.

The words INDICATORS ON=

Blank.

The names of all indicators that are on, each separated by a blank.

If more than one record is needed to write all the indicators, positions
1 through 43 are used only by the first record. The indicators are
written starting in position 45 of the remaining records.

Note: If an indicator contains a character that is not valid (not '0'
or '1'), the indicator is listed followed by the hexadecimal represen-
tation of the value in the indicator. For example, if indicators 01 and
88 are on, and indicator 33 contains the character A, the indicator
line appears as: ON = 01 33 (C1) 88.

When the result field contains an entry, a separate record is written in the following

format:

Positions Information

1-14 The words FIELD VALUE=

15- (any position) The contents of the result field. The first 66 characters of

the result field are written in positions 15 through 80 of this
record. If the field is greater than 66 characters, the addi-
tional characters are written in positions 15 through 80 of
additional records.

Numeric fields are written out in unpacked format and are zero-suppressed. The
sign is always written to the right of the field; a minus (-) sign is written to the right
of negative fields, and a blank is written to the right of positive fields. Zero fields
are written with the last zero and the sign. No other editing is done. If the result
field is an array name, the elements are written in order, one record for each
element. When a multiple occurrence data structure is specified, only the current
occurrence is written.

DEFN

DEFN (Field Definition)

Code Factor 1 Factor 2 Result Field Indicators
DEFN *LIKE Referenced field Defined field
DEFN *NAMVAR External data area Internal
program area

Depending on the factor 1 entry, the declarative DEFN operation can do either of the
following:

» Define a field based on the attributes (length and decimal positions) of another
field.
¢ Define a field as a data area.

You can specify the DEFN operation anywhere within calculations. The control level
entry (positions 7 and 8) can be blank or can contain an L1 through L9 indicator,
the LR indicator, or an L0 entry to group the statement within the appropriate
section of the program. The control level entry is used for documentation only.
Conditioning indicator entries (positions 9 through 17) are not permitted.

*LIKE DEFN
The “DEFN (Field Definition)” operation with *LIKE in factor 1 defines a field based
upon the attributes (length and decimal positions) of another field.

Factor 2 must contain the name of the field being referenced, and the result field
must contain the name of the field being defined. The field specified in factor 2 ,
which can be defined in the program or externally, provides the attributes for the
field being defined. Factor 2 cannot be a literal or a named constant. If factor 2 is
an array, an array element, or a table name, the attributes of an element of the
array or table are used to define the field. The result field cannot be an array, an
array element, a data structure, or a table name.

You can use positions 49 through 51 (field length) to make the result field entry
longer or shorter than the factor 2 entry. A plus sign (+) in position 49 indicates a
length increase; a minus sign (-) in position 49 indicates a length decrease. Posi-
tions 50 and 51 can contain the increase or decrease in length (right-adjusted) or
can be blank. If positions 49 through 51 are blank, the result field entry is defined
with the same length as the factor 2 entry. You cannot change the number of
decimal positions for the field being defined.

See Figure 54 on page 241 for examples of *LIKE DEFN.

*NAMVAR DEFN

The “DEFN (Field Definition)” operation with *NAMVAR in factor 1 associates a field, a
data structure, a data-structure subfield, or a data-area data structure (within your
RPG/400 program) with an AS/400 data area (outside your RPG/400 program).

Chapter 11. Operation Codes 239

DEFN

240

RPG/400 Reference

In factor 2, specify the external name of a data area. Use *LDA for the name of the
local data area or use *PDA for the Program Initialization Parameters (PIP) data
area. If you leave factor 2 blank, the result field entry is both the RPG/400 nhame
and the external name of the data area.

In the result field, specify the name of one of the following that you have defined in
your program: a field, a data structure, a data structure subfield, or a data-area
data structure. You use this name with the IN and OUT operations to retrieve data
from and write data to the data area specified in factor 2. When you specify a data-
area data structure in the result field, the RPG/400 program implicitly retrieves data
from the data area at program start and writes data to the data area when the
program ends.

The result field entry must not be the name of a file, a program-status data struc-
ture, a file-information data structure (INFDS), a multiple-occurrence data structure,
an input record field, an array, an array element, or a table. It cannot be the name
of a subfield of a multiple-occurrence data structure, of a data area data structure,
of a program-status data structure, of a file-information data structure (INFDS), or of
a data structure that appears on a *NAMVAR DEFN statement.

In positions 49 through 52, you can define the length and number of decimal posi-
tions for the entry in the result field. These specifications must match those for the
external description of the data area specified in factor 2. The local data area is
character data of length 1024, but within your program you can access the local
data area as if it has a length of 1024 or less.

DEFN

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

*

C+ FLDA is a 7-position character field.
Cx FLDB is a 5-digit field with 2 decimal positions.

C*

C*

Cx FLDP is a 7-position character field.

c *LIKE DEFN FLDA FLDP

Cx*

Cx FLDQ is a 9-position character field.

c *LIKE DEFN FLDA FLDQ + 2

C*

Cx FLDR is a 6-position character field.

C *LIKE DEFN FLDA FLDR -1

Cx*

C+ FLDS is a 5-position numeric field with 2 decimal positions.
C *LIKE DEFN FLDB FLDS

C*

C* FLDT is a 6-position numeric field with 2 decimal positions.
C *LIKE DEFN FLDB FLDT + 1

Cx*

C+ FLDU is a 3-position numeric field with 2 decimal positions.
C *LIKE DEFN FLDB FLDU - 2

C*

C+ FLDX is a 3-position numeric field with 2 decimal positions.
C *LIKE DEFN FLDU FLDX

Figure 54 (Part 1 of 2). DEFN Operation

Chapter 11. Operation Codes 241

DEFN

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

Cx*
Cx*
Cx*
C*
C

C*
Cx*
Cx*
Cx*
C

C*
C=*
Cx*
Cx*
C

If specified, the attributes (length and decimal positions) of
the data area (TOTGRS) must be the same as those for the
external data area.

*NAMVAR DEFN TOTGRS 102

The result field entry (TOTNET) is the name of the data area to
be used within the RPG/400 program. The factor 2 entry (TOTAL)
is the name of the data area as defined to the system.

*NAMVAR DEFN TOTAL TOTNET

The result field entry (SAVTOT) is the name of the data area to
be used within the RPG/400 program. The factor 2 entry (*LDA)
indicates the use of the local data area.

*NAMVAR DEFN *LDA SAVTOT

Figure 54 (Part 2 of 2). DEFN Operation

242

RPG/400 Reference

DELET

DELET (Delete Record)

Code

Factor 1 Factor 2 Result Field Indicators

DELET

Search argument File name NR ER _

The DELET operation deletes a record from a database file. The file must be an
update file (identified by a U in position 15. of the file description specifications)
The deleted record can never be retrieved.

If factor 1 contains no entry, the DELET operation deletes the current record (the last
record retrieved). The record must have been locked by a previous input operation
(for example, CHAIN or READ).

Factor 1, the search argument, can contain a key or relative record number that
identifies the record to be deleted. If access is by key, factor 1 can be a field
name, a hamed constant, or a literal. In addition, a KLIST name can be specified in
factor 1 for an externally described file. If duplicate records exist for the key, only
the first of the duplicate records is deleted from the file. If access is by relative
record number, factor 1 must contain an integer literal or a numeric field with zero
decimal positions.

Factor 2 must contain the name of the update file or the name of a record format in
the file from which a record is to be deleted. A record format name is valid only
with an externally described file. If factor 1 is not specified, the record format name
must be the name of the last record read from the file; otherwise, an error occurs.

If factor 1 has an entry, you must specify a resulting indicator in positions 54 and
55. If factor 1 does not have an entry, leave these positions blank. This indicator
is set on if the record to be deleted is not found in the file. You can specify a
resulting indicator in positions 56 and 57; it is set on if the DELET operation is not
completed successfully. (For example, an unauthorized user tries to delete the
record) Leave positions 58 and 59 blank.

Under the 0S/400 operating system, if a read operation is done on the file specified

in factor 2 after a successful DELET operation to that file, the next record after the
deleted record is obtained.

Chapter 11. Operation Codes 243

DIV

DIV (Divide)
Code Factor 1 Factor 2 Result Field Indicators
DIV(%2) Dividend Divisor Quotient +-Z

244 RPG/400 Reference

If factor 1 is specified, the DIV operation divides factor 1 by factor 2; otherwise, it
divides the result field by factor 2. The quotient (result) is placed in the result field.
If factor 1 is O, the result of the divide operation is 0. Factor 2 cannot be 0. Ifitis,
an error occurs and the RPG/400 exception/error handling routine receives control.
When factor 1 is not specified, the result field (dividend) is divided by factor 2
(divisor), and the result (quotient) is placed in the result field. Factor 1 and factor 2
must be numeric; each can contain one of: an array, array element, field, figurative
constant, literal, named constant, subfield, or table name.

Any remainder resulting from the divide operation is lost unless the move remainder
(MVR) operation is specified as the next operation. If you use conditioning indicators,
you must ensure that the DIV operation is processed immediately before the MVR
operation. If the MVR operation is processed before the DIV operation, undesirable
results occur. If move remainder is the next operation, the result of the divide oper-
ation cannot be half-adjusted (rounded).

For further rules for the DIV operation, see “Arithmetic Operations” on page 189.

Figure 33 on page 191 shows examples of the DIV operation.

DO

DO (Do)

Code Factor 1 Factor 2 Result Field Indicators

DO Starting value Limit value Index value

The DO operation begins a group of operations and indicates the number of times
the group will be processed. To indicate the number of times the group of oper-
ations is to be processed, specify an index field, a starting value, and a limit value.
An associated ENDDO statement marks the end of the group. For further informa-
tion on DO groups, see “Structured Programming Operations” on page 201.

In factor 1, specify a starting value with no decimal positions, using a numeric
literal, named constant, or field name. If you do not specify factor 1, the starting
value is 1.

In factor 2, specify the limit value with no decimal positions, using a numeric field
name, literal, or named constant. If you do not specify factor 2, the limit value is 1.

In the result field, specify a numeric field name that will contain the current index
value. The result field must be large enough to contain the limit value plus the

increment. If you do not specify an index field, one is generated for internal use.
Any value in the index field is replaced by factor 1 when the DO operation begins.

Factor 2 of the associated ENDDO operation specifies the value to be added to the
index field. It can be a numeric literal or a numeric field with no decimal positions.
If it is blank, the value to be added to the index field is 1.

In addition to the DO operation itself, the conditioning indicators on the DO and ENDDO
statements control the DO group. The conditioning indicators on the DO statement
control whether or not the DO operation begins. These indicators are checked only
once, at the beginning of the DO loop. The conditioning indicators on the associated
ENDDO statement control whether or not the DO group is repeated another time.
These indicators are checked at the end of each loop.

The DO operation follows these 7 steps:

1. If the conditioning indicators on the DO statement line are satisfied, the DO oper-
ation is processed (step 2). If the indicators are not satisfied, control passes to
the next operation to be processed following the associated ENDDO statement
(step 7).

2. The starting value (factor 1) is moved to the index field (result field) when the
DO operation begins.

3. If the index value is greater than the limit value, control passes to the calcu-
lation operation following the associated ENDDO statement (step 7). Otherwise,
control passes to the first operation after the DO statement (step 4).

. Each of the operations in the DO group is processed.

5. If the conditioning indicators on the ENDDO statement are not satisfied, control
passes to the calculation operation following the associated ENDDO statement
(step 7). Otherwise, the ENDDO operation is processed (step 6).

6. The ENDDO operation is processed by adding the increment to the index field.
Control passes to step 3. (Note that the conditioning indicators on the DO state-
ment are not tested again (step 1) when control passes to step 3.)

N

Chapter 11. Operation Codes 245

DO

7. The statement after the ENDDO statement is processed when the conditioning
indicators on the DO or ENDDO statements are not satisfied (step 1 or 5), or when
the index value is greater than the limit value (step 3).

Remember the following when specifying the DO operation:

e The index, increment, limit value, and indicators can be modified within the loop
to affect the ending of the DO group.
e A DO group cannot span both detail and total calculations.

See “LEAVE (Leave a Do Group)” and “ITER (lterate)” for information on how those
operations affect a DO operation.

You have the option of indenting DO statements, IF-ELSE clauses, and
SELEC-WHxx-0THER clauses for readability in the compiler listing. See the section on
Structured Programming in the RPG/400 User’s Guide for an explanation of how to
indent statements in the compiler listing. Figure 55 shows how the INDENT compiler
option can make the compiler printout more readable. In this example, a vertical
bar is used for indentation. Note that underscore characters are used to show the
resulting indicators that are missing from the compiler printout.

| D S SR 28 - 32 ST SR SO S SRS
MOVE 5 AMOUNT 50
MOVE 100 TOTAL 50
MOVE 1 FACTOR 20
AMOUNT DOWLE TOTAL
Z-ADD 1 COUNT 50
COUNT DOUEQ 10
AMOUNT IFEQ 10
ADD 1 FACTOR
AMOUNT MULT FACTOR AMOUNT
COUNT IFEQ 2
Z-ADD 2 FACTOR
SETON 02
ELSE
Z-ADD 4 FACTOR
SETON 03
ENDIF
ENDIF
ENDDO
SETON 04
ENDDO

Figure 55. Source Listing Indentation

246 RPG/400 Reference

DO

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

Cx*
Cx*
Cx*
C*
C*
C*
Cx*
Cx*
Cx*
C

C

C

C

Cx*
Cx*
Cx*
C*
C*
Cx*
Cx*
Cx*
Cx*
C*
C*
C

OOOO0O

The DO group is processed 10 times when indicator 17 is on;

it stops running when the index value in field X, the result
field, is greater than the Timit value (10) in factor 2. When
the DO group stops running, control passes to the operation
immediately following the ENDDO operation. Because factor 1
in the DO operation is not specified, the starting value is 1.
Because factor 2 of the ENDDO operation is not specified, the

incrementing value is 1.

17 DO 10 X 30 DO 10 TIMES
ENDDO

The DO group can be processed 10 times. The DO group stops

running when the index value in field X is greater than

the Timit value (20) in factor 2, or if indicator 50 is not on
when the ENDDO operation is encountered. When indicator 50

is not on, the ENDDO operation is not processed; therefore,
control passes to the operation following the ENDDO operation.
The starting value of 2 is specified in factor 1 of the DO
operation, and the incrementing value of 2 is specified in
factor 2 of the ENDDO operation.

2 DO 20 X 30 DO 16 TIMES

50 ENDDO 2

Figure 56. DO Operation

Chapter 11. Operation Codes 247

DOUxx

DOUxx (Do Until)

Code Factor 1 Factor 2 Result Field Indicators
DOUxx Comparand Comparand

The DOUxx operation begins a group of operations you want to process more than
once (but always at least once). An associated ENDDO statement marks the end
of the group. For further information on DO groups and the meaning of xx, see
“Structured Programming Operations” on page 201.

Factor 1 and factor 2 must contain a literal, a named constant, a field name, a table
name, an array element, a figurative constant, or a data structure name. Factor 1
and factor 2 must be either both character or both numeric.

On the DOUxx statement, you indicate a relationship xx. To specify a more complex
condition, immediately follow the DOUxx statement with ANDxx or ORxx statements.
The operations in the DO group are processed once, and then the group is repeated
while the relationship exists between factor 1 and factor 2 or the condition specified
by a combined DOUxx, ANDxx, or ORxx operation exists. The group is always proc-
essed at least once even if the condition is not true at the start of the group.

In addition to the DOUxx operation itself, the conditioning indicators on the DOUxx and
ENDDO statements control the DO group. The conditioning indicators on the DOUxx

statement control whether or not the DOUxx operation begins. The conditioning indi-
cators on the associated ENDDO statement can cause a DO loop to end prematurely.

The DOUxx operation follows these steps:

1. If the conditioning indicators on the DOUxx statement line are satisfied, the DOUxx
operation is processed (step 2). If the indicators are not satisfied, control
passes to the next operation that can be processed following the associated
ENDDO statement (step 6).

2. The DOUxx operation is processed by passing control to the next operation that
can be processed (step 3). The DOUxx operation does not compare factor 1
and factor 2 or test the specified condition at this point.

. Each of the operations in the DO group is processed.

4. If the conditioning indicators on the ENDDO statement are not satisfied, control
passes to the next calculation operation following the associated ENDDO state-
ment (step 6). Otherwise, the ENDDO operation is processed (step 5).

5. The ENDDO operation is processed by comparing factor 1 and factor 2 of the
DOUxx operation or testing the condition specified by a combined operation. If
the relationship xx exists between factor 1 and factor 2 or the specified condi-
tion exists, the DO group is finished and control passes to the next calculation
operation after the ENDDO statement (step 6). If the relationship xx does not
exist between factor 1 and factor 2 or the specified condition does not exist, the
operations in the DO group are repeated (step 3).

6. The statement after the ENDDO statement is processed when the conditioning
indicators on the DOUxx or ENDDO statements are not satisfied (steps 1 or 4), or
when the relationship xx between factor 1 and factor 2 or the specified condi-
tion exists at step 5.

w

See “LEAVE (Leave a Do Group)” and “ITER (lterate)” for information on how those
operations affect a DOUxx operation.

248 RPG/400 Reference

DOUxx

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

Cx*
Cx*
Cx*
C
C*
C*
Cx*
Cx*
Cx*
Cx*
C*
C
C
Cx*
Cx*
Cx*
C
C
C

The DOUEQ operation runs the operation within the DO group at
least once.
FLDA DOUEQFLDB

At the ENDDO operation, a test is processed to determine whether
FLDA is equal to FLDB. If FLDA does not equal FLDB, the
preceding operations are processed again. This Toop continues
processing until FLDA is equal to FLDB. When FLDA is equal to
FLDB, the program branches to the operation immediately
following the ENDDO operation.

SUB 1 FLDA

ENDDO

The combined DOUEQ ANDEQ OREQ operation processes the operation
within the DO group at Teast once.

FLDA DOUEQFLDB
FLDC ANDEQFLDD
FLDE OREQ 100

Figure 57 (Part 1 of 2). DOUxx Operations

Chapter 11. Operation Codes 249

DOUxx

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

Cx*
Cx*
Cx*
C*
C*
C*
Cx*
Cx*
Cx*
Cx*
C*
C=*
Cx*
Cx*
Cx*
C

C

C

C

At the ENDDO operation, a test is processed to determine whether
the specified condition, FLDA equal to FLDB and FLDC equal to
FLDD, exists. If the condition exists, the program branches to
the operation immediately following the ENDDO operation. There
is no need to test the OREQ condition, FLDE equal to 100, if the
DOUEQ and ANDEQ conditions are met. If the specified condition
does not exist, the OREQ condition is tested. If the OREQ
condition is met, the program branches to the operation
immediately following the ENDDO. Otherwise, the operations
folTowing the OREQ operation are processed and then the program
processes the conditional tests starting at the second DOUEQ
operation. If neither the DOUEQ and ANDEQ condition nor the
OREQ condition is met, the operations following the OREQ
operation are processed again.

SUB 1 FLDA
ADD 1 FLDC
ADD 5 FLDE
ENDDO

Figure 57 (Part 2 of 2). DOUxx Operations

250

RPG/400 Reference

DOWxx

DOWxx (Do While)

Code Factor 1 Factor 2 Result Field Indicators
DOWxx Comparand Comparand

The DOWxx operation begins a group of operations you want to process while the
relationship xx exists between factor 1 and factor 2. To specify a more complex
condition, immediately follow the DOWxx statement with ANDxx or ORxx statements.
An associated ENDDO statement marks the end of the group. For further informa-
tion on DO groups and the meaning of xx, see “Structured Programming Operations”
on page 201.

Factor 1 and factor 2 must contain a literal, a named constant, a figurative con-
stant, a field name, a table name, an array element, or a data structure name.
Factor 1 and factor 2 must be either both character or both numeric. The compar-
ison of factor 1 and factor 2 follows the same rules as those given for the compare
operations. See “Compare Operations” on page 193.

In addition to the DOWxx operation itself, the conditioning indicators on the DOWxx and
ENDDO statements control the DO group. The conditioning indicators on the DOWxx
statement control whether or not the DOWxx operation is begun. The conditioning
indicators on the associated ENDDO statement control whether the DO group is
repeated another time.

The DOWxx operation follows these steps:

1. If the conditioning indicators on the DOWxx statement line are satisfied, the DOWxx
operation is processed (step 2). If the indicators are not satisfied, control
passes to the next operation to be processed following the associated ENDDO
statement (step 6).

2. The DOWxx operation is processed by comparing factor 1 and factor 2 or testing
the condition specified by a combined DOWxx, ANDxx, or ORxx operation. If the
relationship xx between factor 1 and factor 2 or the condition specified by a
combined operation does not exist, the DO group is finished and control passes
to the next calculation operation after the ENDDO statement (step 6). If the
relationship xx between factor 1 and factor 2 or the condition specified by a
combined operation exists, the operations in the DO group are repeated (step
3).

. Each of the operations in the DO group is processed.

4. If the conditioning indicators on the ENDDO statement are not satisfied, control
passes to the next operation to run following the associated ENDDO statement
(step 6). Otherwise, the ENDDO operation is processed (step 5).

5. The ENDDO operation is processed by passing control to the DOWxx operation
(step 2). (Note that the conditioning indicators on the DOWxx statement are not
tested again at step 1.)

6. The statement after the ENDDO statement is processed when the conditioning
indicators on the DOWxx or ENDDO statements are not satisfied (steps 1 or 4), or
when the relationship xx between factor 1 and factor 2 of the specified condi-
tion does not exist at step 2.

w

See “LEAVE (Leave a Do Group)” and “ITER (lterate)” for information on how those
operations affect a DOWxx operation.

Chapter 11. Operation Codes 251

DOWxx

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
Cx*

Cx The DOWLT operation allows the operation within the DO group
Cx to be processed only if FLDA is less than FLDB. If FLDA is

Cx not less than FLDB, the program branches to the operation

Cx immediately following the ENDDO operation. If FLDA is Tess

C+x than FLDB, the operation within the DO group is processed.

C FLDA DOWLTFLDB

Cx*

Cx The ENDDO operation causes the program to branch to the first
C+ DOWLT operation where a test is made to determine whether FLDA
Cx is less than FLDB. This Toop continues processing until FLDA
Cx s equal to or greater than FLDB; then the program branches

Cx to the operation immediately following the ENDDO operation.

C MULT 2.08 FLDA

C ENDDO

C+ In this example, multiple conditions are tested. The combined
Cx DOWLT ORLT operation allows the operation within the DO group
Cx to be processed only while FLDA is less than FLDB or FLDC. If
Cx neither specified condition exists, the program branches to

Cx the operation immediately following the ENDDO operation. If

C* either of the specified conditions exists, the operation after
Cx the ORLT operation is processed.

C FLDA DOWLTFLDB

C FLDA ORLT FLDC

C+x The ENDDO operation causes the program to branch to the second
C+ DOWLT operation where a test determines whether specified

C+ conditions exist. This loop continues until FLDA is equal to
C* or greater than FLDB and FLDC; then the program branches to the
Cx operation immediately following the ENDDO operation.

C MULT 2.08 FLDA

C ENDDO

Figure 58. DOWxx Operations

252 RPG/400 Reference

DSPLY

DSPLY (Display Function)

Code

Factor 1 Factor 2 Result Field Indicators

DSPLY

Message identifier Output queue Response ER

The DSPLY operation allows the program to communicate with the display work
station that requested the program. The operation can display a message and
accept a response.

The value in factor 1 is used to create the message to be displayed. If factor 1 is
specified, it can contain a field name, a literal, a named constant, a table name, or
an array element whose value is used to create the message to be displayed.
Factor 1 can also contain *M, followed by a message identifier that identifies the
message to be retrieved from the message file, QUSERMSG. QUSERMSG must be in a
library in the library list of the job receiving the message.

The message identifier can be from 1 to 7 characters in length and can include an
optional alphabetic prefix of 3 characters followed immediately by 1 to 4 digits. If
the alphabetic prefix is not specified, the default is USR. The numeric portion of the
message identifier (1) must immediately follow either *M or the optional alphabetic
prefix, (2) cannot include embedded blanks, and (3) must be left-adjusted (high-
order zeros can be omitted). If the numeric portion of the message identifier is not
specified, the default is 0000. Valid examples are:

Factor 1 Message

Entry Identifier
Used

*M USRO000

*MABC ABC0O000

*M1 USRO001

*MABCH ABC0O005

If specified, factor 2 can contain a character field, a literal, a named constant, a
table name, or an array element whose value is the symbolic name of the object
meant to receive the message and from which the optional response can be sent.
Any gueue name except a program message queue name can be the value con-
tained in the factor 2 entry. The queue must be declared to the 0S/400 system
before it can be specified in factor 2. (For information on how to create a queue,
see the CL Programmer’s Guide.) There are two predefined queues:

Queue Value

QSYSOPR The message is sent to the system operator. Note that the QSYSOPR
message queue severity level must be zero (00) to enable the DSPLY
operation to immediately display a message to the system operator.

*EXT The message is sent to the requester.

Note: For a batch job, if factor 2 is blank, the default is QSYSOPR. For an interac-
tive job, if factor 2 is blank, the default is *EXT.

The result field is optional. If it is specified, the response is placed in it. It can
contain a field name, a table name, or an array element in which the response is
placed. If no data is entered, the result field is unchanged.

Chapter 11. Operation Codes 253

DSPLY

254

RPG/400 Reference

Positions 56 and 57 can contain an indicator to be set on if an error occurs on the
operation. If an error occurs when the workstation user enters the response, the
message is displayed again a maximum of five times. After the fifth display, the
indicator in positions 56 and 57, if specified, is set on. If this indicator is not speci-
fied, the exception/error handling routine receives control.

When you specify the DSPLY operation with no message identifier in factor 1, the
operation functions as follows:

e When factor 1 contains an entry and the result field is blank, the contents of the
factor 1 entry are displayed. The program does not wait for a response unless
a display file with the parameter RSTDSP (*NO) specified was used to display a
format at the workstation. Then the program waits for the user to press Enter.

* When factor 1 is blank and the result field contains an entry, the contents of the
result field entry are displayed and the program waits for the user to enter data
for the response. The reply is placed in the result field.

e When both factor 1 and the result field contain entries, the contents of the
factor 1 and result field entries are combined and displayed. The program
waits for the user to enter data for the response. The response is placed in the
result field.

The maximum length of information that can be displayed is 52 characters.

The format of the record written by the DSPLY operation with no message identifier
in factor 1 follows:

1 The maximum length of information that can be displayed is 52 characters.

Variable Length? Variable Lengtht

DSPLY l l l
t 11 Tttt T

blank Contents of blank Contents of the result
factor 1 if field if both factor 1
it is and the result field
specified are specified.

or
contents of
the result field
if factor 1 is
not specified.

When you specify the DSPLY operation with a message identifier in factor 1, the
operation functions as follows: the message identified by the factor 1 entry is
retrieved from QUSERMSG, the message is displayed, and the program waits for the
user to respond by entering data if the result field is specified. The response is
placed in the result field. For information on how to format the display, see the Data
Management Guide.

When replying to a message, remember the following:

e Numeric fields sent to the display are right-adjusted and zero-suppressed.

DSPLY

If a numeric field is keyed with a length greater than the number of digits in the
result field and the rightmost character is not a minus sign (-), an error is
detected and a second wait occurs. The user must key in the field again.

To enter a null response to the system operator queue (QSYSOPR), the user must
enter the characters =N and then press Enter.

Character fields are padded on the right with blanks after all characters are
keyed.

Numeric fields are right-adjusted and padded on the left with zeros after all
characters are keyed.

Lowercase characters are not converted to uppercase.

Chapter 11. Operation Codes 255

DUMP

DUMP (Program Dump)

Code

Factor 1 Factor 2 Result Field Indicators

DUMP Identifier

256 RPG/400 Reference

The DUMP operation provides a dump (all fields, all files, indicators, data structures,
arrays, and tables defined) of the program. It can be used independently of or in
combination with the 0S/400 testing and debugging functions.

The contents of factor 1 identify the DUMP operation. It must contain a character
entry that can be one of: a field name, literal, named constant, table name, or array
element whose contents identify the dump. Factor 1 cannot contain a figurative
constant.

The program continues processing the next calculation statement following the DUMP
operation.

The DUMP operation is performed only if a 1 is specified in position 15 of the control
specification. If the control specification entry is not made, the DUMP operation is
checked for errors and the statement is printed on the listing, but the DUMP operation
is not processed.

If you have specified a POST operation code, with factor 1 blank, anywhere in your
program, no file information data structures (INFDS) are updated until you do an
appropriate POST operation. For up-to-date information, do a POST operation for
each file before you do the DUMP operation. (This action is not required for a dump
that the system does in response to an inquiry message.)

ELSE (Else)

ELSE

Code

Factor 1

Factor 2

Result Field

Indicators

ELSE

The ELSE operation is an optional part of the IFxx operation. If the IFxx compar-
ison is met, the calculations before ELSE are processed; otherwise, the calculations

after ELSE are processed.

Within total calculations, the control level entry (positions 7 and 8) can be blank or
can contain an L1 through L9 indicator, an LR indicator, or an L0 entry to group the
statement within the appropriate section of the program. The control level entry is
for documentation purposes only. Conditioning indicator entries (positions 9

through 17) are not permitted.

To close the 1Fxx/ELSE group use an ENDIF operation.

Figure 63 on page 274 shows an example of an ELSE operation with an IFxx oper-

ation.

Chapter 11. Operation Codes 257

ENDyy

ENDyy (End a Group)

Code Factor 1 Factor 2 Result Field Indicators
END Increment value
ENDCS
ENDDO Increment value
ENDIF
ENDSL

258 RPG/400 Reference

The ENDyy operation ends a CASxx, DO, DOUxx, DOWxx, IFxx, or SELEC group of oper-
ations.

The ENDyy operations are listed below:

END End a CASxx, DO, DOUxx, DOWxx, IFxx, or SELEC group
ENDCS End a CASxx group

ENDDO End a DO, DOUxx, or DOWxx group

ENDIF End an IFxx group

ENDSL End a SELEC group

Factor 2 is allowed only on an ENDyy operation that delimits a DO group. It contains
the incrementing value of the DO group. It can be positive or negative, must have
no decimal positions, and can be one of: an array element, table name, data struc-
ture, field, named constant, or numeric literal. If factor 2 is not specified on the
ENDDO, the increment defaults to 1.

Conditioning indicators are optional for ENDDO and not allowed for ENDCS, ENDIF,
and ENDSL.

Resulting indicators are not allowed. Factor 1, factor 2, and the result field must all
be blank for ENDCS, ENDIF, and ENDSL.

If one ENDyy form is used with a different operation group (for example, ENDIF with a
structured group), an error results at compilation time.

See the CASxx, DO, DOUxx, DOWxx, IFxx, and SELEC operations for examples
that use the ENDyy operation.

ENDSR

ENDSR (End of Subroutine)

Code

Factor 1 Factor 2 Result Field Indicators

ENDSR

Label Return point

The ENDSR operation defines the end of an RPG/400 subroutine and the return point
to the main program. ENDSR must be the last statement in the subroutine. Factor 1
can contain a label that can be used as a point to which a GOTO operation within
the subroutine can branch. The control level entry (positions 7 and 8) can be SR or
blank. Conditioning indicator entries are not allowed.

The ENDSR operation ends a subroutine and causes a branch back to the statement
immediately following the EXSR operation unless the subroutine is a program
exception/error subroutine (*PSSR) or a file exception/error subroutine (INFSR). For
these subroutines, factor 2 of the ENDSR operation can contain an entry that speci-
fies where control is to be returned following processing of the subroutine. This
entry can be a field name that contains a reserved keyword or a literal or named
constant that is a reserved keyword. If a return point that is not valid is specified,
the RPG/400 error handler receives control.

See “File Exception/Error Subroutine (INFSR)” on page 37 for more detail on return
points.

See Figure 60 on page 265 for an example of coding an RPG/400 subroutine.

Chapter 11. Operation Codes 259

EXCPT

EXCPT (Calculation Time Output)

Code

Factor 1 Factor 2 Result Field Indicators

EXCPT

EXCPT name

260 RPG/400 Reference

The EXCPT operation has two major functions:

It allows records to be written during calculation time.
It allows a variable number of records to be written in one program cycle at
either detail calculation or total calculation time.

See Figure 59 on page 261 for examples of the EXCPT operation.

When specifying the EXCPT operation remember:

The exception records that are to be written during calculation time are indi-
cated by an E in position 15 of the output specifications. An EXCPT name,
which is the same name as specified in factor 2 of an EXCPT operation, can be
specified in positions 32 through 37 of the output specifications of the exception
records.
Only exception records, not heading, detail, or total records, can contain an
EXCPT name.
When the EXCPT operation with a name in factor 2 is processed, only those
exception records with the same EXCPT hame are checked and written if the
conditioning indicators are satisfied.
When factor 2 is blank, only those exception records with no name in positions
32 through 37 of the output specifications are checked and written if the condi-
tioning indicators are satisfied.

If an exception record is conditioned by an overflow indicator on the output
specification, the record is written only during the overflow portion of the
RPG/400 cycle or during fetch overflow. The record is not written at the time
the EXCPT operation is processed.

If an exception output is specified to a format that contains no fields, the fol-
lowing occurs:

— If an output file is specified, a record is written with default values.

— If arecord is locked, the system treats the operation as a request to unlock

the record. This is the alternative form of requesting an unlock. The pre-
ferred method is with the UNLCK operation.

EXCPT

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

Cx*
Cx*
Cx*
C*
C*
C

Cx*
Cx*
Cx*
Cx*
C*
C=*
Cx*
Cx*
Cx*

(0E3

o

(= I = R = R = i = B = I = B =]

When the EXCPT operation with HDG specified in factor 2 is
processed, all exception records with the EXCPT name HDG are
written. In this example, UDATE and PAGE would be printed
and then the printer would space 2 lines.

EXCPTHDG

When the EXCPT operation with no entry in factor 2 is
processed, all exception records that do not have an EXCPT
name specified in positions 32 through 37 are written if the
conditioning indicators are satisfied. Any exception records
without conditioning indicators and without an EXCPT name
are always written by an EXCPT operation with no entry in
factor 2. In this example, if indicator 10 is on, TITLE and
AUTH would be printed and then the printer would space 1 Tine.
EXCPT

E 1 10
TITLE
AUTH

E 2 HDG
UDATE
PAGE

E 1 DETAIL
AUTH
VERSNO

Figure 59. EXCPT Operation with/without Factor 2 Specified

Chapter 11. Operation Codes 261

EXFMT

EXFMT (Write/Then Read Format)

Code

Factor 1 Factor 2 Result Field Indicators

EXFMT

Record format name ER _

262 RPG/400 Reference

The EXFMT operation is a combination of a WRITE followed by a READ to the same
record format. EXFMT is valid only for a WORKSTN file defined as a full procedural (F
in position 16 of the file description specifications) combined file (C in position 15 of
the file description specifications) that is externally described (E in position 19. of
the file description specifications)

Factor 2 must contain the name of the record format to be written and then read. A
resulting indicator can be specified in positions 56 and 57 to be set on if the EXFMT
operation is not completed successfully. When the indicator is set on, the read
portion of the operation is not processed (record identifying indicators and fields are
not modified). Positions 54, 55, 58, and 59 must be blank.

For the use of EXFMT with multiple device files, see the descriptions of the READ (by
format name) and WRITE operations.

EXSR

EXSR (Invoke Subroutine)

Code Factor 1 Factor 2 Result Field Indicators

EXSR Subroutine hame

The EXSR operation causes the RPG/400 subroutine named in factor 2 to be proc-
essed. The subroutine name must be a unique symbolic name and must appear
as factor 1 of a BEGSR operation. The EXSR operation can appear anywhere in the
calculation specifications. Whenever it appears, the subroutine that is named is
processed. After operations in the subroutine are processed, the statement fol-
lowing the EXSR operation is processed except when a GOTO within the subroutine is
given to a label outside the subroutine or when the subroutine is an exception/error
subroutine with an entry in factor 2 of the ENDSR operation.

*PSSR used in factor 2 specifies that the program exception/error subroutine is to

be processed. *INZSR used in factor 2 specifies that the program initialization sub-
routine is to be processed.

Chapter 11. Operation Codes 263

Coding Subroutines

264

RPG/400 Reference

An RPG/400 subroutine can be processed from any point in the calculation oper-
ations. All RPG/400 operations can be processed within a subroutine, and these
operations can be conditioned by any valid indicators in positions 9 through 17. SR
or blanks can appear in positions 7 and 8. Control level indicators (L1 through L9)
cannot be used in these positions. However, AND/OR lines within the subroutine can
be indicated in positions 7 and 8.

Fields used in a subroutine can be defined either in the subroutine or in the rest of
the program. In either instance, the fields can be used by both the main program
and the subroutine.

You can include a maximum of 254 subroutines in a program; however, a subrou-
tine cannot contain another subroutine. One subroutine can call another subrou-
tine; that is, a subroutine can contain an EXSR or CASxx. However, an EXSR or CASxx
specification within a subroutine cannot directly call itself. Indirect calls to itself
through another subroutine should not be performed, because unpredictable results
can occur. Use the GOTO and TAG operation codes if you want to branch to another
point within the same subroutine.

Subroutines do not have to be specified in the order they are used. Each subrou-
tine must have a unique symbolic name and must contain a BEGSR and an ENDSR
statement.

The use of the GOTO (branching) operation is allowed within a subroutine. GOTO can
specify the label on the ENDSR operation associated with that subroutine; it cannot
specify the name of a BEGSR operation. A GOTO outside the subroutine cannot be
issued to a BEGSR, ENDSR, or TAG within a subroutine. A GOTO within a subroutine
can be issued to a TAG within either detail or total calculations.

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

Cx*

C* For a subroutine, positions 7 and 8 can be blank or contain SR.
Cx*

C

C :

C EXSR SUBRTB

C .

C CALCULATIONS
C :

CL2 EXSR SUBRTA

C .

C CALCULATIONS
C :

C SUBRTA BEGSR

c .

C CALCULATIONS
C

C*

C+* One subroutine can call another subroutine.
Cx*

C EXSR SUBRTC

c .

C CALCULATIONS
C :

C ENDSR

C SUBRTB BEGSR

C CALCULATIONS
C

C

C*

Figure 60 (Part 1 of 2). Example of Coding Subroutines

Chapter 11. Operation Codes

265

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
Cx*

Cx GOTO and TAG operations can be used within a subroutine.

Cx*

C START TAG

C .

C CALCULATIONS
C :

cC 23 GOTO END

C :

C CALCULATIONS
C :

C 24 GOTO START

C END ENDSR

C SUBRTC BEGSR

c .

C CALCULATIONS
C :

C ENDSR

Cx*

Figure 60 (Part 2 of 2). Example of Coding Subroutines

266 RPG/400 Reference

FEOD

FEOD (Force End of Data)

Code

Factor 1 Factor 2 Result Field Indicators

FEOD

File name ER

The FEOD operation signals the logical end of data for a primary, secondary, or full
procedural file. The FEOD function differs, depending on the file type and device.
(For an explanation of how FEQD differs per file type and device, see the Database
Guide.)

FEOD differs from the CLOSE operation: the program is not disconnected from the
device or file; the file can be used again for subsequent file operations without an
explicit OPEN operation being specified to the file.

You can specify conditioning indicators. Factor 2 names the file to which FEOD is
specified. You can specify a resulting indicator in positions 56 and 57 to be set on
if the operation is not completed successfully.

To process any further sequential operations to the file after the FEOD operation (for
example, READ or READP), you must reposition the file.

Chapter 11. Operation Codes 267

FORCE

FORCE (Force a Certain File to Be Read Next Cycle)

Code

Factor 1 Factor 2 Result Field Indicators

FORCE

File name

268 RPG/400 Reference

The FORCE operation allows selection of the file from which the next record is to be
read. It can be used only for primary or secondary files.

Factor 2 must contain the name of a file from which the next record is to be
selected.

If the FORCE operation is processed, the record is read at the start of the next
program cycle. If more than one FORCE operation is processed during the same
program cycle, all but the last is ignored. FORCE must be issued at detail time, not
total time.

FORCE operations override the multifile processing method by which the program
normally selects records. However, the first record to be processed is always
selected by the normal method. The remaining records can be selected by FORCE
operations. For information on how the FORCE operation affects match-field proc-
essing, see Figure 4 on page 14.

If FORCE is specified for a file that is at end of file, no record is retrieved from the
file. The program cycle determines the next record to be read.

FREE

FREE (Deactivate a Program)

Code Factor 1 Factor 2 Result Field Indicators
FREE Program name _ER _

The FREE operation removes a program from the list of activated programs, frees
static storage, and ensures program initialization (first cycle processing) the next
time the program is called. It does not close files or unlock data areas.

Factor 2 contains the name of the program to be deactivated. It must contain the
name of a field, named constant, literal, or array element that contains the name of
the program to be deactivated. The entry in factor 2 must be character data; it can
include a qualified name such as LIB/PGM. The name preceding the slash is the
library that contains the program to be freed from the activated program list.
Specify only the program name if you want to search the library list. The RPG/400
language uses the program name exactly as specified in the literal, field, or array
element to determine the program to be called. (Lowercase characters are not
shifted to uppercase, and a name enclosed in quotation marks (for example 'ABC")
always includes the quotation marks as part of the name of the program to be
freed.) =*LIBL and *CURLIB are not supported (for example, '*LIBL/PR0OG").

You can specify any valid resulting indicator in positions 56 and 57 to be set on if
FREE is not completed successfully. No error occurs if the program to be freed is
not active (for example, the program does not exist).

For programs that are to run under System/38 Environment, if you specify the
library name, the program name must be immediately followed by a period and
then the library name.

See the “CALL (Call a Program)” operation for details on how program references
are grouped.

Note: Issuing a FREE operation and then a CALL operation to the same program
reopens the program's files and may use additional temporary storage. Repeatedly
issuing FREE and CALL operations to a program, without closing the program's files
in between, may use enough temporary storage to degrade the system's perform-
ance, and ultimately cause an AS/400 machine check. This problem can be
avoided if the files have shared open data paths SHARE(*YES). However, using
SHARE (*YES) can cause other problems. Read the section on "Sharing an Open
Data Path" in the RPG/400 User’s Guide for complete details.

Figure 61 on page 270 shows the FREE operation being used with the CALL opera-
tion.

Chapter 11. Operation Codes 269

FREE

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
Cx*

C* When the CALL operation is processed, the data in the result

Cx fields of the parameter Tist can be accessed by PROGA. The

C+ parameter Tist ends when the first calculation operation other
Cx than a PARM operation is encountered.

C CALL 'PROGA'

C PARM FLDA 30
C PARM FLDB 30
C PARM FLDC 50
Cx*

C+ When the FREE operation is processed, PROGA is removed from the
C+x Tlist of activated programs. Removing it from the Tist ensures

Cx a fresh copy of all fields in PROGA the next time the program is
C+ called. Indicator 55 is set on if the FREE operation is not

Cx completed successfully.

Cx*

C FREE 'PROGA' 55 55 = NO SUCCESS
Figure 61. CALL/FREE Operations

270 RPG/400 Reference

GOTO (Go To)

GOTO

Code

Factor 1 Factor 2 Result Field Indicators

GOTO

Label

The GOTO operation allows calculation operations to be skipped by instructing the
program to go to (or branch to) another calculation operation in the program. A
“TAG (Tag)” operation names the destination of a GOTO operation. Use a GOTO oper-
ation to specify a branch:

e To a previous or a succeeding specification line

¢ From a detail calculation line to another detail calculation line

e From a total calculation line to another total calculation line

¢ From a detail calculation line to a total calculation line

¢ From a subroutine to a detail calculation line or to a total calculation line.

A GOTO operation outside a subroutine cannot specify a branch to a TAG or ENDSR
operation within that subroutine.

A branch cannot be made from a total calculation line to a detail calculation line.
(A total calculation line is defined as one that is conditioned by a control level indi-
cator in positions 7 and 8 of the calculation specifications.)

Branching from one part of the RPG/400 logic cycle to another may result in an
endless loop. You are responsible for ensuring that the logic of your program does
not produce undesirable results.

Factor 2 must contain the label to which the program is to branch. This label is

entered in factor 1 of a TAG or ENDSR operation. The label must be a unique sym-
bolic name.

Chapter 11. Operation Codes 271

GOTO

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

Cx*
Cx*
Cx*
C*
C
C*
Cx*
C
Cx*
C
C*
C
C

OOOOOOO

C
Cx*

CL1
CL1
CL1

If indicator 10, 15, or 20 is on, the program branches to
the TAG Tabel specified in the GOTO operations.
A branch within detail calculations.

10 GOTO RTN1
A branch from detail to total calculations.
15 GOTO RTN2
RTN1 TAG
Calculations
20 GOTO END
Calculations
END TAG
A branch within total calculations.
GOTO RTN2
RTN2 TAG

Figure 62. GOTO and TAG Operations

272

RPG/400 Reference

IFXxX

IFxx (If)
Code Factor 1 Factor 2 Result Field Indicators
IFxx Comparand Comparand

The IFxx operation allows a group of calculations to be processed if a certain
relationship, specified by xx, exists between factor 1 and factor 2. When “ANDxx
(And)” and “ORxx (Or)” operations are used with IFxx, the group of calculations is
performed if the condition specified by the combined operations exists. (For the
meaning of xx, see “Structured Programming Operations” on page 201.)

You can use conditioning indicators. Factor 1 and factor 2 must contain a literal, a
named constant, a figurative constant, a table name, an array element, a data
structure name, or a field name. Both the factor 1 and factor 2 entries must be
character, or both must be numeric.

If the relationship specified by the IFxx and any associated ANDxx or ORxx oper-
ations does not exist, control passes to the calculation operation immediately fol-
lowing the associated ENDIF operation. If an “ELSE (Else)” operation is specified
as well, control passes to the first calculation operation that can be processed fol-
lowing the ELSE operation.

Conditioning indicator entries on the ENDIF operation associated with IFxx must be
blank.

An ENDIF statement must be used to close an IFxx group. If an IFxx statement is
followed by an ELSE statement, an ENDIF statement is required after the ELSE state-
ment but not after the IFxx statement.

You have the option of indenting DO statements, IF-ELSE clauses, and
SELEC-WHxx-0THER clauses for readability. See also the section on “Structured
Programming” in the RPG/400 User’s Guide for an explanation of how to indent
statements in the source listing.

Chapter 11. Operation Codes 273

IFXX

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
Cx*

C+ If FLDA equals FLDB, the calculation after the IFEQ operation

Cx is processed. If FLDA does not equal FLDB, the program

Cx branches to the operation immediately following the ENDIF.

C FLDA IFEQ FLDB IF EQUAL

C :

c

C :
C ENDIF

Cx*

C+ If FLDA equals FLDB, the calculation after the IFEQ operation
Cx 1is processed and control passes to the operation immediately

Cx following the ENDIF statement. If FLDA does not equal FLDB,

Cx control passes to the ELSE statement and the calculation

Cx immediately following is processed.

Cx*

C FLDA IFEQ FLDB IF EQUAL

C :

C

C :

C ELSE IF NOT EQUAL
c o

C

C :

C ENDIF

Figure 63 (Part 1 of 2). IFxx/JENDIF and IFxx/ELSE/ENDIF Operations

274 RPG/400 Reference

IFXxX

L3N R A DU DU ST DU O DU SPU : DUPPE. U AN
CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
Cx*

C+ If FLDA is equal to FLDB and greater than FLDC, or, if FLDD

Cx 1is equal to FLDE and greater than FLDF, the calculation

C+ after the ANDGT operation is processed. If neither of the

C+ specified conditions exists, the program branches to the

C+ operation immediately following the ENDIF statement.

C FLDA IFEQ FLDB
C FLDA ANDGTFLDC
C FLDD OREQ FLDE
C FLDD ANDGTFLDF
C o

C

C :

C ENDIF

Figure 63 (Part 2 of 2). IFxx/ENDIF and IFxx/ELSE/ENDIF Operations

Chapter 11. Operation Codes 275

IN (Retrieve a Data Area)

Code

Factor 1 Factor 2 Result Field Indicators

*LOCK Data area name ER _

276

RPG/400 Reference

The IN operation retrieves a data area and optionally allows you to specify whether
the data area is to be locked from update by another program. For a data area to
be retrieved by the IN operation, it must be specified in the result field of an
*NAMVAR DEFN statement. (See “DEFN (Field Definition)” on page 239 for infor-
mation on *NAMVAR DEFN.)

Factor 1 can contain the reserved word *LOCK or can be blank. *L0CK indicates
that the data area cannot be updated or locked by another program until (1) an
“UNLCK (Unlock a Data Area or Release a Record)” operation is processed, (2) an
“OUT (Write a Data Area)” operation with no factor 1 entry is processed, or (3) the
RPG/400 program implicitly unlocks the data area when the program ends.

Factor 1 must be blank when factor 2 contains the name of the local data area or
the Program Initialization Parameters (PIP) data area.

You can specify a *LOCK IN statement for a data area that the program has locked.
When factor 1 is blank, the lock status is the same as it was before the data area
was retrieved: If it was locked, it remains locked; if unlocked, it remains unlocked.

Factor 2 must be either the name of the result field used when you retrieved the
data area or the reserved word *NAMVAR. When *NAMVAR is specified, all data areas
defined in the program are retrieved. If an error occurs on the retrieval of a data
area (for example, a data area can be retrieved but cannot be locked), an error
occurs on the IN operation and the RPG/400 exception/error handling routine
receives control. If a program exception/error subroutine (*PSSR) is specified, the
program status data structure contains information on the data area in error. If a
message is issued to the requester, the message identifies the data area in error.

You can specify a resulting indicator in positions 56 and 57 to be set on if an error
occurs during the operation. Positions 54-55 and 58-59 must be blank.

For further rules for the IN operation, see “Data-Area Operations” on page 194.

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

Cx*

C+x TOTAMT, TOTGRS, and TOTNET are defined as data areas. The IN
C* operation retrieves all the data areas defined in the program
C+ and Tocks them.
Cx LR time it writes and unlocks all the data areas.
C+x The data areas can then be used by other programs.

Cx*
C
Cx*
C
C
C
Cx*
CLR
Cx*
C
C
C

Figure 64.

*LOCK IN
ADD
ADD
ADD
ouT
*NAMVAR DEFN
*NAMVAR DEFN
*NAMVAR DEFN
IN and OUT Operations

*NAMVAR
AMOUNT
GROSS
NET

*NAMVAR

The program processes calculations, and at

TOTAMT
TOTGRS
TOTNET

TOTAMT 82
TOTGRS 102
TOTNET 102

Chapter 11. Operation Codes 277

ITER

ITER (Iterate)

Code

Factor 1

Factor 2

Result Field

Indicators

ITER

278 RPG/400 Reference

The ITER operation transfers control from within a do group to the ENDDO statement
of the do group. It can be used in DO, DOUxx, and DOWxx loops to transfer control
immediately to a loop ENDDO statement. It causes the next iteration of the loop to

be executed immediately.

ITER affects the innermost loop.

If conditioning indicators are present on the ENDDO statement to which control is
passed, and the condition is not satisfied, processing continues with the statement

following the ENDDO operation.

The “LEAVE (Leave a Do Group)” operation is similar to the ITER operation;
however, LEAVE transfers control to the statement following the ENDDO operation.

ITER

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

Cx*

Cx The following example uses a DOU Toop containing a DOW loop.
Cx The IF statement checks indicator 01. If indicator 01 is ON,
C* the LEAVE operation is executed, transferring control out of

C* the innermost DOW loop to the Z-ADD instruction.
Then indicator

Cx 01 is not ON, subroutine PROC1l is processed.

If indicator

C* 12 is checked. If it is OFF, ITER transfers control to the
C* innermost ENDDO and the condition on the DOW is evaluated
C* again. If indicator 12 is ON, subroutine PROCZ is processed.

(2]

FLDA DOUEQFLDB

NUM DOWLT10
*INO1 IFEQ *ON
LEAVE
ENDIF
EXSR PROC1
*IN12 IFEQ *OFF
ITER
ENDIF
EXSR PROC2
ENDDO
Z-ADD20 RSLT 20

ENDDO

OOOOOOOOOOOOOOOOOOOO

*

Figure 65 (Part 1 of 2). ITER Operation

Outer loop

Inner loop

ITER
Inner ENDDO
Z-ADD

Outer ENDDO

Chapter 11. Operation Codes 279

ITER

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

Cx*
Cx*
Cx*
C*
C*
C*
Cx*
Cx*

o

OOOOOOOOOOOOOO0O

The following example uses a DOU lToop containing a DOW loop.
The IF statement checks indicator 1. If indicator 1 is ON, the
MOVE operation is executed, followed by the LEAVE operation,
transferring control from the innermost DOW Toop to the Z-ADD

instruction.

If indicator 1 is not ON, ITER transfers control

control to the innermost ENDDO and the condition on the DOW is

evaluated again.
FLDA

NUM
*INO1

DOUEQFLDB

DOWLT10

IFEQ *ON
MOVE 'UPDATE'
LEAVE

ELSE

ITER

ENDIF

ENDDO
Z-ADD20

FIELD 20

Inner ENDDO

RSLT 20

ENDDO

Figure 65 (Part 2 of 2). ITER Operation

280

RPG/400 Reference

KFLD

KFLD (Define Parts of a Key)

Code Factor 1 Factor 2 Result Field Indicators
KFLD Key field

The KFLD operation is a declarative operation that indicates that a field is part of a
search argument identified by a KLIST name.

The KFLD operation can be specified anywhere within calculations, including total
calculations. The control level entry (positions 7 and 8) can be blank or can
contain an L1 through L9 indicator, an LR indicator, or an LO entry to group the
statement within the appropriate section of the program. Conditioning indicator
entries (positions 9 through 17) are not permitted.

The result field must contain the name of a field that is to be part of the search
argument. The result field cannot contain an array name or a table name. Each
KFLD field must agree in length, data type (character or numeric), and decimal posi-
tion with the corresponding field in the composite key of the record or file.
However, each KFLD field need not have the same name as the corresponding field
in the composite key. The order the KFLD fields are specified in the KLIST deter-
mines which KFLD is associated with a particular field in the composite key. For
example, the first KFLD field following a KLIST operation is associated with the left-
most (high-order) field of the composite key.

Figure 66 on page 283 shows an example of the KLIST operation with KFLD oper-
ations.

Chapter 11. Operation Codes 281

KLIST

KLIST (Define a Composite Key)

Code

Factor 1 Factor 2 Result Field Indicators

KLIST

KLIST name

The KLIST operation is a declarative operation that gives a name to a list of KFLDs.
This list can be used as a search argument to retrieve records from files that have
a composite key.

You can specify a KLIST anywhere within calculations. The control level entry
(positions 7 and 8) can be blank or can contain an L1 through L9 indicator, an LR
indicator, or an L0 entry to group the statement within the appropriate section of the
program. Conditioning indicator entries (positions 9 through 17) are not permitted.
Factor 1 must contain a unique name.

Remember the following when specifying a KLIST operation:

 If a search argument is composed of more than one field (a composite key),
you must specify a KLIST with multiple KFLDs.

e A KLIST name can be specified as a search argument only for externally
described files.

e A KLIST and its associated KFLD fields can appear anywhere in calculations.

e A KLIST must be followed immediately by at least one KFLD.

e A KLIST is ended when a non-KFLD operation is encountered.

e A KLIST name can appear in factor 1 of a CHAIN, DELET, READE, REDPE, SETGT,
or SETLL operation.

e The same KLIST name can be used as the search argument for multiple files,
or it can be used multiple times as the search argument for the same file.

282 RPG/400 Reference

A DDS source

A R RECORD

A FLDA 4

A SHIFT 1 0
A FLDB 10

A CLOCK# 5 0
A FLDC 10

A DEPT 4

A FLDD 8

A K DEPT

A K SHIFT

A K CLOCK#

A*

LI IO RN T DAL DAY SUPRPAS UPUPI . JUPIPIS UNUURP ¢ APV U A

CLONOINOZ2NO3Factorl+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
Cx*

Cx The KLIST operation indicates the name, FILEKY, by which the

C* search argument can be specified.

c FILEKY KLIST

C KFLD DEPT

C KFLD SHIFT
C KFLD CLOCK#

The following diagram shows what the search argument looks like.
The fields DEPT, SHIFT, and CLOCK# are
key fields in this record.

Data Base
Management

Record | Shift Clock# Dept

N [T
N /

'

| Dept \ Shift \ Clock#

Search
Argument

Figure 66. KLIST and KFLD Operations

Chapter 11. Operation Codes

KLIST

283

LEAVE

LEAVE (Leave a Do Group)

Code

Factor 1 Factor 2 Result Field Indicators

LEAVE

284 RPG/400 Reference

The LEAVE operation transfers control from within a do group to the statement fol-
lowing the ENDDO operation.

You can use LEAVE within a DO, DOUxx, or DOWxx loop to transfer control imme-
diately from the innermost loop to the statement following the innermost loop's
ENDDO operation. Using LEAVE to leave a do group does not increment the index.

In nested loops, LEAVE causes control to transfer “outwards” by one level only.
LEAVE is not allowed outside a do group.

The “ITER (lterate)” operation is similar to the LEAVE operation; however, ITER
transfers control to the ENDDO statement.

LEAVE

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
Cx*

C+ The following example uses an infinite Toop. When the user

Cx types 'q', control transfers to the LEAVE operation, which in

C* turn transfers control out of the lToop to the Z-ADD operation.

C*

C 2 DOWNE1

C :

C ANSWER IFEQ 'q'

C LEAVE

C ENDIF

C :

C ENDDO

C Z-ADDA B
Cx*

Cx*

Cx The following example uses a DOUxx loop containing a DOWxx.

Cx The IF statement checks indicator 1. If it is ON, indicator

C* 99 is turned ON, control passes to the LEAVE operation and

C* out of the inner DOWxx loop.

Cx*

C* A second LEAVE instruction is then executed because indicator 99
C* is ON, which in turn transfers control out of the DOUxx Toop.

o

FLDA DOUEQFLDB

NUM DOWLT10

*INO1 IFEQ *ON
SETON 99
LEAVE

ENDIF
ENDDO
99 LEAVE

OOOOOOOOOOOOO

ENDDO

Figure 67. LEAVE Operation

Chapter 11. Operation Codes 285

LOKUP

LOKUP (Look Up)
Code Factor 1 Factor 2 Result Field Indicators
LOKUP
(array) Search argument Array name HI LO EQ
(table) Search argument Table name Table name HI LO EQ

286 RPG/400 Reference

The LOKUP operation causes a search to be made for a particular element in an
array or table. Factor 1 is the search argument (data for which you want to find a
match in the array or table named). It can be: a character or numeric literal, a field
name, an array element, a table name, a named constant, or a figurative constant.

If a table is named in factor 1, the search argument used is the element of the table
last selected in a LOKUP operation, or it is the first element of the table if a previous
LOKUP has not been processed. The array or table to be searched is specified in
factor 2.

For a table LOKUP, the result field can contain the name of a second table from

which an element (corresponding positionally with that of the first table) can be
retrieved. The name of the second table can be used to reference the element
retrieved. The result field must be blank if factor 2 contains an array name.

Decimal alignment is not processed for LOKUP operations.

Resulting indicators specify the search condition for LOKUP. One must be specified
in positions 54 through 59 first to determine the search to be done and then to
reflect the result of the search. Any specified indicator is set on only if the search
is successful. No more than two indicators can be used. Resulting indicators can
be assigned to equal and high or to equal and low. The program searches for an
entry that satisfies either condition with equal given precedence; that is, if no equal
entry is found, the nearest lower or nearest higher entry is selected.

Resulting indicators can be assigned to equal and Tow, or equal and high. The
LOKUP operation searches for an entry that satisfies either condition with equal given
priority.

High (54-55): Instructs the program to find the entry that is nearest to, yet
higher in sequence than, the search argument. The first higher entry found
sets the indicator assigned to high on.

Low (56-57): Instructs the program to find the entry that is nearest to, yet lower
in sequence than, the search argument. The first such entry found sets the
indicator assigned to /ow on.

Equal (58-59): Instructs the program to find the entry equal to the search argu-
ment. The first equal entry found sets the indicator assigned to equal on.

When you use the LOKUP operation, remember:

e The search argument and array element or table element must have the same
length and the same format (character or numeric).

¢ When LOKUP is processed on an array and an index is used, the LOKUP begins
with the element specified by the index. The index value is set to the position
number of the element located. An error occurs if the index is equal to zero or
is higher than the number of elements in the array when the search begins.

LOKUP

The index is set equal to one if the search is unsuccessful. If the index is a
named constant, the index value will not change.

e A search can be made for high, low, high and equal, or low and equal only if a
sequence is specified for the array or table in the extension specifications. For
further information on the sequence entry, see “Position 45 (Sequence)” on
page 123.

¢ No resulting indicator is set on if the search is not successful.

e If only an equal indicator (positions 58-59) is used, the LOKUP operation will
search the entire array or table. If your array or table is in ascending sequence
and you want only an equal comparison, you can avoid searching the entire
array or table by specifying a high indicator.

e The LOKUP operation can produce unexpected results when the array is not
strictly in ascending or descending sequence.

S I A~ P, UDRR: DUPIPIPE. RO SOOI [RSPIPUNE . DUPIPUPE JUPRP ¢ AP PP A
CL0N01N02N03Factor1+++0pcdeFactor2+++Resu1tLenDHH1LoEqumments++++++
Cx*

Cx In this example, the programmer wants to know which element in
C* ARY the LOKUP operation locates. The Z-ADD operation sets the
Cx field X to 1. The LOKUP starts at the element ARY that is

C* indicated by field X and continues running until it finds the

Cx first element equal to SRCHWD. The index value, X, is set to

Cx the position number of the element located.

c Z-ADD1 X 30
c SRCHWD LOKUPARY, X 26 EQUAL
C=*

Cx In this example, the programmer wants to know if an element

Cx is found that is equal to SRCHWD. LOKUP searches ARY until it
Cx finds the first element equal to SRCHWD. When this occurs,

Cx indicator 26 is set on.

C SRCHWD LOKUPARY 26 EQUAL

Cx*

Cx The LOKUP starts at a variable index number specified by field
Cx X. Field X does not have to set to 1 before the LOKUP

C+ operation. When LOKUP locates the first element in ARY equal

C* to SRCHWD, indicator 26 is set on. The index value, X, is

C+ set to the position number of the element located.

C*

C SRCHWD LOKUPARY, X 26 EQUAL

Figure 68. LOKUP Operation with Arrays

Chapter 11. Operation Codes 287

MHHZO

MHHZO (Move High to High Zone)

Code Factor 1 Factor 2 Result Field Indicators
MHHZO Source field Target field

288 RPG/400 Reference

The MHHZO operation moves the zone portion of a character from the leftmost zone
in factor 2 to the leftmost zone in the result field. Factor 2 and the result field must
both be defined as character fields. For further information on the MHHZ0 operation,

see “Move Zone Operations” on page 199.

The function of the MHHZ0 operation is shown in Figure 34 on page 200.

MHLZO (Move High to Low Zone)

MHLZO

Code Factor 1 Factor 2 Result Field Indicators
MHLZO Source field Target field

The MHLZO operation moves the zone portion of a character from the leftmost zone
in factor 2 to the rightmost zone in the result field. Factor 2 must be defined as a
character field. The result field can be character or numeric data. For further infor-
mation on the MHLZ0 operation, see “Move Zone Operations” on page 199.

The function of the MHLZ0 operation is shown in Figure 34 on page 200.

Chapter 11. Operation Codes 289

MLHZO

MLHZO (Move Low to High Zone)

Code Factor 1 Factor 2 Result Field Indicators
MLHZO Source field Target field

290 RPG/400 Reference

The MLHZO operation moves the zone portion of a character from the rightmost zone
in factor 2 to the leftmost zone in the result field. Factor 2 can be defined as a
numeric field or as a character field, but the result field must be a character field.
For further information on the MLHZO operation, see “Move Zone Operations” on

page 199.

The function of the MLHZ0 operation is shown in Figure 34 on page 200.

MLLZO (Move Low to Low Zone)

MLLZO

Code Factor 1 Factor 2 Result Field Indicators
MLLZO Source field Target field

The MLLZO operation moves the zone portion of a character from the rightmost zone
in factor 2 to the rightmost zone in the result field. Factor 2 and the result field can

be either character data or numeric data. For further information on the MLLZO0, see
“Move Zone Operations” on page 199.

The function of the MLLZ0 operation is shown in Figure 34 on page 200.

Chapter 11. Operation Codes 291

MOVE

MOVE (Move)

Code Factor 1 Factor 2 Result Field Indicators
MOVE (p) Source field Target field +-2B

292

RPG/400 Reference

The MOVE operation transfers characters from factor 2 to the result field. Moving
starts with the rightmost character of factor 2.

If factor 2 is longer than the result field, the excess leftmost characters of factor 2
are not moved. If the result field is longer than factor 2, the excess leftmost charac-
ters in the result field are unchanged, unless padding is specified.

You cannot specify resulting indicators if the result field is an array; you can specify
them if it is an array element, or a nonarray field.

If factor 2 is shorter than the length of the result field, a P specified in the operation
extender position (position 53) causes the result field to be padded on the left after
the move occurs.

For further information on the MOVE operation, see “Move Operations” on page 198.

a. Character
to
Character

b. Character
to
Numeric

c. Numeric
to
Numeric

d. Numeric
to
Character

a. Character
to
Character

b. Character
to
Numeric

c. Numeric
to
Numeric

d. Numeric
to
Character

Factor 2 Shorter Than Result Field

Factor 2
PH4SN
T

PH4SN
I T
PH4SN
I T Y
PH4SN
I T

1278425
I Y |

1278425
I Y Y

1278425
L1111

1278425
I |

Factor 2 Longer
Factor 2

ACEGPH4SN
T Y T

ACEGPHA4SN
T Y

ACEGPHA4SN
T

ACEGPH4SN
T Y Y

1278425
L1111

1278425
I |

1278425
I Y Y

1278425
I Y |

Before MOVE

After MOVE

Before MOVE

After MOVE

Before MOVE

After MOVE

Before Move

After MOVE

Than Result

Before MOVE

After MOVE

Before MOVE

After MOVE

Before MOVE

After MOVE

Before MOVE

After MOVE

Figure 69 (Part 1 of 2). MOVE Operation

Result Field

123456784
T Y T

+

1234PHASN
N

123456784
T Y T

+

123478425
T Y O

123456789
I A

121278425
T Y Y O

ACFGPHA4SN
T Y T

AC1278425
N

Field

Result Field
56784
L1 1111
PH4SN
L1111

+
56784
L1111

78425
L1111

56748
L1111

78425
L1111

PH4SN
L1111

78425
LI 1111

MOVE

Chapter 11. Operation Codes 293

MOVE

Factor 2 Shorter Than Result Field
With P in Operation Extender Field

Factor 2 Result Field

+
PH4SN Before MOVE 1234567 84

a. Character L1l L 1 11 L1
to PH4SN After MOVE PH4SN
Character L 1 11 I A
+
PH4SN Before MOVE 1234567 84

b. Character L L 1 11 L1
to -
Numeric PH4SN After MOVE 000078425
I A
1278425 Before MOVE 123456789
c. Numeric I I T Y
to 1278425 After MOVE 001278425
Numeric T A A
1278425 Before Move ACFGPHA4SN
d. Numeric Ll 1 11 1 I R R IR
to 1278425 After MOVE 1278425
Character L 1 1 1 11 I

Factor 2 and Result Field Same Length

Factor 2 Result Field
PH4SN Before MOVE 56 7 8 4
a. Character I A
to PH4SN After MOVE P H4 SN
Character I | L1111
PH4SN Before MOVE 567 8 4
b. Character I | L1111
to -
Numeric PH4SN After MOVE 784 25
I A
78425 Before MOVE A LTS5 F
c. Numeric | L1 1111
to - -
Numeric 78425 After MOVE 78425
I | L1111
78425 Before MOVE A LTS5 F
d. Numeric I | L1111

to -

Character 78425 After MOVE 7 84 2 N
I | L1111

+ -
Note: 4 = letter D, and 5 = letter N.

Figure 69 (Part 2 of 2). MOVE Operation

294 RPG/400 Reference

MOVEA

MOVEA (Move Array)

Code Factor 1 Factor 2 Result Field Indicators
MOVEA (p) Source Target +-27B

The MOVEA operation transfers character or numeric values from factor 2 to the
result field. (Certain restrictions apply when moving numeric values.) Factor 2 or
the result field must contain an array. Factor 2 and the result field cannot specify
the same array even if the array is indexed.

You can use MOVEA with a packed, binary, zoned, or character array. You can:

* Move several contiguous character array elements to a single character field
e Move a single character field to several contiguous character array elements
¢ Move contiguous array elements to contiguous elements of another array.

Movement of data starts with the first element of an array if the array is not indexed
or with the element specified if the array is indexed. The movement of data ends
when the last array element is moved or filled. When the result field contains the
indicator array, all indicators affected by the MOVEA operation are noted in the cross-
reference listing.

The coding for and results of MOVEA operations are shown in Figure 70 on
page 296.

Character MOVEA Operations
Both factor 2 and the result field must be defined as character.

On a character MOVEA operation, movement of data ends when the number of char-
acters moved equals the shorter length of the fields specified by factor 2 and the
result field; therefore, the character MOVEA operation could end in the middle of an
array element.

Numeric MOVEA Operations

Moves are only valid between fields and array elements with the same numeric
length defined. Factor 2 and the result field entries can specify numeric fields,
numeric array elements, or numeric arrays; at least one must be an array or array
element. The numeric types can be binary, packed decimal, or zoned decimal but
need not be the same between factor 2 and the result field.

Factor 2 can contain a numeric literal if the result field entry specifies a numeric
array or numeric array-element:

e The numeric literal cannot contain a decimal point.
¢ The length of the numeric literal cannot be greater than the element length of
the array or array element specified in the result field.

Decimal positions are ignored during the move and need not correspond. Numeric
values are not converted to account for the differences in the defined number of
decimal places.

The figurative constants *BLANK, *ALL, *ON and *QFF are not valid in factor 2 of a
MOVEA operation on a numeric array.

Chapter 11. Operation Codes 295

MOVEA

General MOVEA Operations

If you need to use a MOVEA operation in your application, but restrictions on
numeric MOVEA operations prevent you, you might be able to use character MOVEA
operations. If the numeric array is in zoned decimal format:

¢ Define the numeric array as a subfield of a data structure
» Redefine the numeric array in the data structure as a character array.

If a figurative constant is specified with MOVEA, the length of the constant generated
is equal to the portion of the array specified. For figurative constants in numeric
arrays, the element boundaries are ignored except for the sign that is put in each
array element. Examples are:

e MOVEA *BLANK ARR,X
Beginning with element X, the remainder of ARR will contain blanks.
e MOVEA *ALL‘XYZ’> ARR,X

ARR has 4-byte character elements. Element boundaries are ignored, as is
always the case with character MOVEA. Beginning with element X, the
remainder of the array will contain “XYZXYZXYZXYZ. . .’.

Note that the results of MOVEA are different from those of the MOVE example above.

For both character and numeric MOVEA operations, you can specify a P in position
53 to pad the result from the right.

For further information on the MOVEA operation, see “Move Operations” on
page 198.

LI IR AR T DU DAY/ SUPUPAE UPUPI . JUPIPIE U ¢ APPSR A
CLONOINO2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
C MOVEAARRX ARRY
C* Array-to-array move. No indexing; different length array,
Cx same element length.
ARRX ARRY
[L[2[3[#[5]6[7[8[°]°] gefore |A[A]B[B|C|cD[D]E|E|FIF]

One Element One Element

L2BIAs[e[718]o]0] peter [1[2[3]4[5]017 |8 [*[°]F)F)

| | | |
| f

Figure 70 (Part 1 of 6). MOVEA Operation

296 RPG/400 Reference

MOVEA

2N I AN AP DUPIPIPE AP SUPN SUPUPII . DU U ¢ DUPIPI DAY A
CLONOINO2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
C MOVEAARRX ARRY, 3

Cx Array-to-array move with index result field.

ARRX

1[2[3[4[3[6[7|s[3]o] setore [4[a[s[s|e[e[o]o]e]]

One Element One Element

PRSPl g APl

>
(&)]
(@)}

LI IR . S D Y DU . FUPUPPE. U PP R AN
CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
C MOVEAARRX ARRY

Cx Array-to-array move, no indexing and different length array
Cx elements.

ARRX ARRY

L[2[3]4[5[6]7[8[2[0] Before |A[A|A[8[8[8|c|c|c|o[oo]

One Element One Element

] »

o 1 o) G G G G
| | | |
| f

Figure 70 (Part 2 of 6). MOVEA Operation

Chapter 11. Operation Codes 297

MOVEA

L3N R A DU DU ST DU O DU SPU : DUPPE. U AN
CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
c MOVEAARRX, 4 ARRY

Cx Array-to-array move, index factor 2 with different Tength array
Cx elements.
ARRY

1[2[3[4[3[6[7|s[3]o] setore |a[a[a[s[s[s[c[e[e]o]o])

One Element One Element

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

C MOVEAFIELDA ARRY
C+x Field-to-array move, no indexing on array.
FIELDA ARRY

1]2]3]4|5(6|7 agggge ‘9|8\6[5 1 | \ 1 | \

HJ

One Element

1]2|3]4|5(|6]|7 QSEEX ‘[il‘4|5}6‘7|1} ‘ | }
R

Figure 70 (Part 3 of 6). MOVEA Operation

298 RPG/400 Reference

MOVEA

CLONOINO2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
Cx*
C* In the following example, N=3. Array-to-field move with variable
C* indexing.
c MOVEAARRX,N FIELD
C*

FIELD

‘o|1}0‘AT§T§‘0|B}0‘3|0}C‘ 58$gge 0|1]0]A

One Element

Sl -

}0‘A|0}2‘0|B}0‘3|0}C‘ QSEEX 0|2|0(B
I

i

LS IR AR SRSPUPI. DUPIPI, AR’ SRR (LSO DUPIPUPE. AP ¢ DRI PP A
CLONOINO2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
c MOVEAARRB ARRZ

C=*

Cx An array-to-array move showing numeric elements.

|1.0 |1.1 11.2 11.3} Before MOVEA |2.0 |3.0 [4.0 [5.0 \6.0|
[[

One Element One Element

|1.0 |1.1 11.2 11.3} After MOVEA |1.0 |1.1 11.2 11.3 \6.0|

Figure 70 (Part 4 of 6). MOVEA Operation

Chapter 11. Operation Codes 299

MOVEA

L3N R A DU DU ST DU O DU SPU : DUPPE. U AN
CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
c MOVEAARRX ARRY P

Cx Array-to-array move. No indexing; different Tength array with
Cx same element length.

1[2[3[4[3[6[7[s[3]o] setore |3[a[s[s[c[e[o]o]e]e] |

One Element One Element

)

1|2P‘4P\6P|8P‘0 After ‘qz\w4|q6lq8\%o| \[

1 MOVEA ‘ |
L IR R T D R | R TN DUV, AP ¢ DRPR Y A
CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
C MOVEAARRB ARRZ P

Cx*
C* An array-to-array move showing numeric elements with padding.

|1.0 |1.1 ‘1.2 ‘1.3} Before MOVEA |2.0 |3.0 ‘4.0 ‘5.0 }6.0|
| |

One Element One Element

|1.o |1.1 ‘1.2 ‘1.3} After MOVEA |1.0 |1.1 ‘1.2 ‘1.3 }0.o|

Figure 70 (Part 5 of 6). MOVEA Operation

300 RPG/400 Reference

MOVEA

L3N R A DU DU ST DU O DU SPU : DUPPE. U AN
CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
c MOVEAARRX, 3 ARRY P

Cx Array-to-array move. No indexing; different Tength array with
Cx same element length.

P[P[P|ofala[R[R[s] sefore [a[a[s[s|c]e]o]o]e]e]|
OOl Arer [RRRLLL L

MOVEA

| | |
| f

Figure 70 (Part 6 of 6). MOVEA Operation

‘P
|

Chapter 11. Operation Codes 301

MOVEL

MOVEL (Move Left)

Code Factor 1 Factor 2 Result Field Indicators
MOVEL (p) Source field Target field +-27B

302

RPG/400 Reference

The MOVEL operation transfers characters from factor 2 to the result field. Moving
begins with the leftmost character in factor 2. You cannot specify resulting indica-
tors if the result field is an array. You can specify them if the result field is an array
element, or a nonarray field.

When data is moved to a numeric field, the sign (+ or -) of the result field is
retained except when factor 2 is as long as or longer than the result field. In this
case, the sign of factor 2 is used as the sign of the result field.

If factor 2 is longer than the result field, the excess rightmost characters of factor 2
are not moved. If the result field is longer than factor 2, the excess rightmost char-
acters in the result field are unchanged, unless padding is specified.

The MOVEL operation is summarized in Figure 71 on page 304.

A summary of the rules for MOVEL operation for four conditions based on field
lengths:

1. Factor 2 is the same length as the result field:

a. If factor 2 and the result field are numeric, the sign is moved with the right-
most position.

b. If factor 2 is numeric and the result field is character, the sign is moved
with the rightmost position.

c. If factor 2 is character and the result field is numeric, a minus zone is
moved into the rightmost position of the result field if the zone from the
rightmost position of factor 2 is a hexadecimal D (minus zone). However, if
the zone from the rightmost position of factor 2 is not a hexadecimal D, a
positive zone is moved into the rightmost position of the result field. Digit
portions are converted to their corresponding numeric characters. If the
digit portions are not valid digits, a data exception error occurs.

d. If factor 2 and the result field are character, all characters are moved.

2. Factor 2 is longer than the result field:

a. If factor 2 and the result field are numeric, the sign from the rightmost posi-
tion of factor 2 is moved into the rightmost position of the result field.

b. If factor 2 is numeric and the result field is character, the result field con-
tains only numeric characters.

c. If factor 2 is character and the result field is numeric, a minus zone is
moved into the rightmost position of the result field if the zone from the
rightmost position of factor 2 is a hexadecimal D (minus zone). However, if
the zone from the rightmost position of factor 2 is not a hexadecimal D, a
positive zone is moved into the rightmost position of the result field. Other
result field positions contain only numeric characters.

d. If factor 2 and the result field are character, only the number of characters
needed to fill the result field are moved.

MOVEL

3. Factor 2 is shorter than the result field:

a. If factor 2 is either numeric or character and the result field is numeric, the
digit portion of factor 2 replaces the contents of the leftmost positions of the
result field. The sign in the rightmost position of the result field is not
changed.

b. If factor 2 is either numeric or character and the result field is character
data, the characters in factor 2 replace the equivalent number of leftmost
positions in the result field. No change is made in the zone of the rightmost
position of the result field.

4. Factor 2 is shorter than the result field and P is specified in the operation
extender field:

a. The move is performed as described above.

b. The result field is padded from the right. See “Move Operations” on
page 198 for more information on the rules for padding.

For further information on the MOVEL operation, see “Move Operations” on
page 198.

Chapter 11. Operation Codes 303

MOVEL

304

RPG/400 Reference

a. Numeric
to
Numeric

b. Numeric
to
Character

c. Character
to
Numeric

d. Character
to
Character

a. Numeric
to
Numeric

b. Numeric
to
Character

c. Character
to
Numeric

d. Character
to
Character

Factor 2 and Result Field Same Length

Factor 2

7 8*4 2 g
7 8*4 2 g

7 814 25
7 814 2 g

PH4SN
I |
PH4SN
I |
PH4SN
I |
PH4SN
I |

Factor 2 Longer

Factor 2

000258425
T

000258425
T

903178425
T

903178425
T

BRWCXH4SN
T

BRWCXH4SN
T

BRWCXH4SN
T

BRWCXH4SN
T

Result Field
+

Before MOVEL 5 6 7*8 4
After MOVEL 7 8 412 5

Before MOVEL A KT 40D
I |

After MOVEL 7 842N
I |

+

Before MOVEL 56 7 8 4
I |

After MOVEL 78425
I |

Before MOVEL A KT 40D
I |

After MOVEL P H 4 SN
I I |

Than Result Field
Result Field

+

Before MOVEL 516 784
After MOVEL 010 025

Before MOVEL A K T 4 D
L1111

After MOVEL 90317
L1111

+

Before MOVEL 5 6 7 814
After MOVEL 2 9 6 317

Before MOVEL A K T 4D
L1111

After MOVEL B RWCX
L1111

Figure 71 (Part 1 of 2). MOVEL Operation

Numeric
to
Numeric

Character
— to
Numeric

Numeric
to
Character

Character
— to
Character

+

Factor 2 Shorter Than Result Field

Factor 2

78425
L1 1111
78425
L1 1111
CPT5N
L1 1111
CPT5N
L1 1111
78425
L1 1111
78425
L1 1111
CPT5N
L1 1111

CPT5N
L1 1111

MOVEL

Result Field

+
Before MOVEL 1+3 060943210
L I |

+
After MOVEL 7+8 4253210
L I |

+

Before MOVEL I1|3|0|9|4|3|2|1|0I

+

After MOVEL |3|7|3|5|5|3|2|1|0|

Before MOVEL IB|R|WIC|X|HI4|S|AI

After MOVEL I7|8|4|2|N|H|4|S|AI

Before MOVEL IB|R|WIC|X|HI4|S|AI

After MOVEL IC|P|T|5|N|HI4|S|AI

Note: 4 = letter D, and 5 = letter N; arrow $ is decimal point.
Factor 2 Shorter Than Result Field
With P in Operation Extender Field

Numeric
to
Numeric

Character
to
Numeric

Numeric
to
Character

Character
to
Character

+

Factor 2

78425
L1 1111
78425
L1 1111
CPT5N
L1 1111
CPT5N
L1 1111
78425
L1 1111
78425
L1 1111
CPT5N
L1 1111

CPT5N
L1 1111

Result Field

+
Before MOVEL 1+3 0943210
L I |

+
After MOVEL 7+8 4250000
L I |

+

Before MOVEL I1|3|0|9|4|3|2|1|0I

+

After MOVEL I3|7|3|5|5|0|0|0|0I

Before MOVEL IB|R|WIC|X|HI4|S|AI

After MOVEL |7|8|4|2|N|

Before MOVEL IB|R|WIC|X|HI4|S|AI

After MOVEL IC|P|T|5|NI

Note: 4 = letter D, and 5 = letter N; arrow $ is decimal point.

Figure 71 (Part 2 of 2).

MOVEL Operation

Chapter 11. Operation Codes

305

MULT

MULT (Multiply)

Code

Factor 1 Factor 2 Result Field Indicators

MULT (%)

Multiplicand Multiplier Product +-Z

306

If factor 1 is specified, factor 1 is multiplied by factor 2 and the product is placed in
the result field. Be sure that the result field is large enough to hold it. Use the
following rule to determine the maximum result field length: result field length
equals the length of factor 1 plus the length of factor 2. If factor 1 is not specified,
factor 2 is multiplied by the result field and the product is placed in the result field.
Factor 1 and factor 2 must be numeric, and each can contain one of: an array,
array element, field, figurative constant, literal, named constant, subfield, or table
name. The result field must be numeric, but cannot be a named constant. You
can specify half adjust (position 53).

For further information on the MULT operation, see “Arithmetic Operations” on
page 189.

See Figure 33 on page 191 for examples of the MULT operation.

RPG/400 Reference

MVR

MVR (Move Remainder)

Code

Factor 1 Factor 2 Result Field Indicators

MVR

Remainder +-Z

The MVR operation moves the remainder from the previous DIV operation to a sepa-
rate field named in the result field. Factor 1 and factor 2 must be blank. The MVR
operation must immediately follow the DIV operation. If you use conditioning indica-
tors, ensure that the MVR operation is processed immediately after the DIV opera-
tion. If the MVR operation is processed before the DIV operation, undesirable results
occur. The result field must be numeric and can contain one of: an array, array
element, subfield, or table name.

Leave sufficient room in the result field if the DIV operation uses factors with
decimal positions. The number of significant decimal positions is the greater of:

e The number of decimal positions in factor 1 of the previous divide operation
e The sum of the decimal positions in factor 2 and the result field of the previous
divide operation.
The sign (+ or -) of the remainder is the same as the dividend (factor 1).

You cannot specify half adjust (position 53) on a DIV operation that is immediately
followed by an MVR operation.

The maximum number of whole number positions in the remainder is equal to the
whole number of positions in factor 2 of the previous divide operation.

The MVR operation cannot be used if the previous divide operation has an array
specified in the result field.

For further information on the MVR operation, see “Arithmetic Operations” on
page 189.

See Figure 33 on page 191 for an example of the MVR operation.

Chapter 11. Operation Codes 307

NEXT

NEXT (Next)

Code Factor 1 Factor 2 Result Field Indicators
NEXT Program device File name _ER _

308

RPG/400 Reference

The NEXT operation code forces the next input for a multiple device file to come
from the program device specified in factor 1, providing the input operation is a
cycle read or a READ-by-file-name. Any read operation, including CHAIN, EXFMT,
READ, and READC, ends the effect of the previous NEXT operation. If NEXT is specified
more than once between input operations, only the last operation is processed.
The NEXT operation code can be used only for a multiple device file.

In factor 1, enter the name of a 10-character field that contains the program device
name or a character literal or named constant that is the program device name. In
factor 2, enter the name of the multiple device WORKSTN file for which the operation
is requested.

You can specify an indicator in positions 56 and 57. It is set on if an
exception/error occurs on the NEXT operation. If the INFSR subroutine is specified
and positions 56 and 57 do not contain an indicator, the subroutine automatically
receives control when an exception/error occurs. If the INFSR subroutine is not
specified and positions 56 and 57 do not contain an indicator, the default error
handler takes control.

OCUR

OCUR (Set/Get Occurrence of a Data Structure)

Code Factor 1 Factor 2 Result Field Indicators
OCUR Occurrence value Data structure Occurrence _ER _
value

The OCUR operation code specifies the occurrence of the data structure that is to be
used next within an RPG/400 program. If a data structure with multiple occurrences
or a subfield of that data structure is specified in an operation, the first occurrence
of the data structure is used until an 0CUR operation is specified. After an 0CUR
operation is specified, the occurrence of the data structure that was established by
the OCUR operation is used.

Factor 1 is optional; if specified, it can contain a numeric, zero decimal position
literal, field name, named constant, or a data structure name. Factor 1 is used
during the OCUR operation to set the occurrence of the data structure specified in
factor 2. If factor 1 is blank, the value of the current occurrence of the data struc-
ture in factor 2 is placed in the result field during the 0CUR operation.

If factor 1 is a data structure name, it must be a multiple occurrence data structure.
The current occurrence of the data structure in factor 1 is used to set the occur-
rence of the data structure in factor 2.

Factor 2 is required and must be the name of a multiple occurrence data structure.

The result field is optional; if specified, it must be a numeric field name with no
decimal positions. During the 0CUR operation, the value of the current occurrence of
the data structure specified in factor 2, after being set by any value or data struc-
ture that is optionally specified in factor 1, is placed in the result field.

You can specify a resulting indicator in positions 56 and 57 to be set on if the
occurrence specified is outside the valid range set for the data structure. If the
occurrence is outside the valid range, the occurrence of the data structure in factor
2 remains the same as before the O0CUR operation was processed.

The OCUR operation establishes which occurrence of a multiple occurrence data
structure is used next in a program. Only one occurrence can be used at a time.

Chapter 11. Operation Codes 309

OCUR

50th
FLDA | FLDB |<«——Occurrence—| FLDC FLDD
49th
FLDA | FLDB |<«——Occurrence—>| FLDC | FLDD
1 1
1 1
1 1
1 1
1 1
3rd

FLDA | FLDB |«——O0ccurrence—| FLDC FLDD

2nd
FLDA FLDB |<«——O0ccurrence—| FLDC FLDD
1st

FLDA | FLDB |<«——O0ccurrence—| FLDC FLDD

DS1 DS2
LI I AU AU DUPIPITE. RO S TN DU AP ¢ AP PPNy AN
Lt i i i i ittt ittt PFromTo++DField+L1IM1FrPIMnZr...
I*

I+ DS1 and DS2 are multiple occurrence data structures.
I* Each data structure has 50 occurrences.

IDS1 DS 50

I 1 5 FLDA
I 6 8OFLDB
I*

IDS2 DS 50

I 1 6 FLDC
I 7 11 FLDD

Figure 72 (Part 1 of 3). Uses of the OCUR Operation

310 RPG/400 Reference

OCUR

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
Cx DS1 is set to the third occurrence. The subfields FLDA

C+x and FLDB of the third occurrence can now be used. The MOVE

Cx and Z-ADD operations change the contents of FLDA and FLDB,

C* respectively, in the third occurrence of DSI.

C 3 OCUR DS1

C MOVE 'ABCDE' FLDA
C Z-ADD22 FLDB
Cx*

Cx DSI1 is set to the fourth occurrence. Using the values in
Cx FLDA and FLDB of the fourth occurrence of DS1, the MOVE
C+ operation places the contents of FLDA in the result field,
Cx FLDX, and the Z-ADD operation places the contents of FLDB
C+* 1in the result field, FLDY.

C 4 OCUR DS1

C MOVE FLDA FLDX
C Z-ADDFLDB FLDY
C*

C+ DS1 is set to the occurrence specified in field X.

C+x For example, if X = 10, DS1 is set to the tenth occurrence.
C X OCUR DS1

Cx*

C+ DS1 is set to the current occurrence of DS2. For example, if
Cx the current occurrence of DS2 is the twelfth occurrence, DSI
C+ 1is set to the twelfth occurrence.

C DS2 OCUR DS1

C*

C+ The value of the current occurrence of DS1 is placed in the
Cx result field, Z. Field Z must be numeric with zero decimal
Cx positions. For example, if the current occurrence of DS1

C+ s 15, field Z contains the value 15.

C OCUR DS1 y4

Figure 72 (Part 2 of 3). Uses of the OCUR Operation

Chapter 11. Operation Codes 311

OCUR

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
Cx*

Cx DS1 is set to the current occurrence of DS2. The value of the
Cx current occurrence of DS1 is then moved to the result field,
C+ Z. For example, if the current occurrence of DS2 is the fifth
Cx occurrence, DS1 is set to the fifth occurrence. The result

Cx field, Z, contains the value 5.

C DS2 OCUR DS1 z

Cx*

C+ DS1 is set to the current occurrence of X. For example, if

C+ X =15, DS1 is set to the fifteenth occurrence. If X equals
Cx 0O or is greater than 50, an error occurs and indicator 20 is
Cx set on. If indicator 20 is on, the LR indicator is set on.

C X OCUR DS1 20
Cx*

C *IN20 IFEQ *ON

C SETON LR

C END

Figure 72 (Part 3 of 3). Uses of the OCUR Operation

312 RPG/400 Reference

OPEN

OPEN (Open File for Processing)

Code

Factor 1 Factor 2 Result Field Indicators

OPEN

File name ER

The explicit OPEN operation opens the file named in factor 2. The factor 2 entry
cannot be designated as a primary, secondary, or table file. You can specify a
resulting indicator in positions 56 and 57 to be set on if the OPEN operation is not
successful. If no indicator is specified, but the INFSR subroutine is specified, the
INFSR automatically receives control when an error/exception occurs. If no indi-
cator or INFSR subroutine is specified, the default error/exception handler receives
control when an error/exception occurs.

To open the file specified in factor 2 for the first time in a program with an explicit
OPEN operation, specify UC (user control) in positions 71 and 72 of the file
description specifications. (See Chapter 5, “File Description Specifications” for
restrictions when using the UC entry.)

If a file is opened and later closed by the CLOSE operation in the program, the pro-
grammer can reopen the file with the OPEN operation and the UC entry is not
required in positions 71 and 72. When UC is not specified, the file is opened at
program initialization. If an OPEN operation is specified for a file that is already
open, an error occurs.

Multiple OPEN operations in a program to the same file are valid as long as the file is
closed when the OPEN operation is issued to it.

When you open a file with the ID option specified (on the file description specifica-

tions continuation line), the ID field is set to blanks. See the description of the ID
option, in Chapter 5, “File Description Specifications.”

Chapter 11. Operation Codes 313

OPEN

FFilenameIPEAF....R1enLK1AIOvKlocEDevice+...... KExit++Entry+A....U..
FEXCPTN 0 E DISK uc
FFILEX I E DISK

LI I DA DU UM DU . I, DU UPIPURY - DUPIE. DU A

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
C*

Cx The explicit OPEN operation opens the EXCPTN file for

C* processing if indicator 97 is on and indicator 98 is off.

C+ Note that the EXCPTN file on the file description

C+ specifications has UC specified in positions 71 and 72.

Cx*

C 97N98 OPEN EXCPTN 99 99=NO SUCCESS
C 97N98N99 WRITEERREC
C=*

C+ FILEX is opened at program initialization. The explicit

C+ CLOSE operation closes FILEX before control is passed to RTNX.
Cx RTNX or another program can open and use FILEX. Upon return,

C+ the OPEN operation reopens the file. Because FILEX is opened

C+ at program initialization, UC is not specified in positions 71
C+x and 72 of the file description specifications.

Cx*

C CLOSEFILEX
C CALL 'RTNX'
C OPEN FILEX

Figure 73. OPEN Operation with CLOSE Operation

314 RPG/400 Reference

ORxx

ORxx (Or)
Code Factor 1 Factor 2 Result Field Indicators
ORXxx Comparand Comparand

The ORxx operation is optional with the DOUxx, DOWNXxX, IFxx, WHxx, and ANDxx
operations. 0Rxx is specified immediately following a DOUxx, DOWxx, IFxx, WHxx,
ANDxx or ORxx statement. Use ORxx to specify a more complex condition for the
DOUxx, DOWxx, IFxx, and WHxx operations.

The control level entry (positions 7 and 8) can be blank or can contain an L1
through L9 indicator, an LR indicator, or an LO entry to group the statement within
the appropriate section of the program. The control level entry must be the same
as the entry for the associated DOUxx, DOWxx, IFxx, or WHxx operation. Condi-
tioning indicator entries (positions 9 through 17) are not allowed.

Factor 1 and factor 2 must contain a literal, a named constant, a figurative con-
stant, a table name, an array element, a data structure name, or a field name.
Factor 1 and factor 2 must be either both character data or both numeric data. The
comparison of factor 1 and factor 2 follows the same rules as those given for the
compare operations. See “Compare Operations” on page 193.

Figure 57 on page 249 shows an example of ORxx and ANDxx operations with a
DOUxx operation.

Chapter 11. Operation Codes 315

OTHER

OTHER (Otherwise Select)

Code

Factor 1 Factor 2 Result Field Indicators

OTHER

*

doooa+ain2...

The O0THER operation begins the sequence of operations to be processed if no
WHxx condition is satisfied in a SELEC group. The sequence ends with the
ENDSL or END operation.

Rules to remember when using the 0THER operation:

The OTHER operation is optional in a SELEC group.

Only one OTHER operation can be specified in a SELEC group.

No WHxx operation can be specified after an 0THER operation in the same SELEC
group.

The sequence of calculation operations in the OTHER group can be empty; the
effect is the same as not specifying an OTHER statement.

Within total calculations, the control level entry (positions 7 and 8) can be blank
or can contain an L1 through L9 indicator, an LR indicator, or an L0 entry to
group the statement within the appropriate section of the program. The control
level entry is for documentation purposes only. Conditioning indicator entries
(positions 9 through 17) are not allowed.

I A P U S T DU O I Y A

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

C*
Cx*
Cx*
Cx*
Cx*
C*
C

OOOOOOO

Example of a SELEC group with WHxx and OTHER. If X equals 1,
do the operations in sequence 1; if X does not equal 1 and Y
equals 2, do the operations in sequence 2. If neither
condition is true, do the operations in sequence 3.

SELEC
WHEQ 1

: seq 1
WHEQ 2

: seq 2
OTHER

: seq 3
ENDSL

Figure 74. OTHER Operation

316

RPG/400 Reference

For more details and examples, see the SELEC and WHxx operations.

ouT

OUT (Write a Data Area)

Code

Factor 1 Factor 2 Result Field Indicators

ouT

*LOCK Data area name ER

The OUT operation updates the data area specified in factor 2. To specify a data
area in factor 2 of an OUT operation, you must ensure two things:

e The data area must also be specified in the result field of a *NAMVAR DEFN
statement.

e The data area must have been locked previously by a *LOCK IN statement or it
must have been specified as a data area data structure by a U in position 18 of
the input specifications. (The RPG/400 language implicitly retrieves and locks
data area data structures at program initialization.)

Factor 1 can contain the reserved word *LOCK or can be blank. When factor 1
contains *LOCK, the data area remains locked after it is updated. When factor 1 is
blank, the data area is unlocked after it is updated.

Factor 1 must be blank when factor 2 contains the name of the local data area or
the Program Initialization Parameters (PIP) data area.

Factor 2 must be either the name of the result field used when you retrieved the
data area or the reserved word *NAMVAR. When *NAMVAR is specified, all data areas
defined in the program are updated. If an error occurs when one or more data
areas are updated (for example, if you specify an OUT operation to a data area that
has not been locked by the program), an error occurs on the OUT operation and the
RPG/400 exception/error handling routine receives control. If you specify a program
exception/error subroutine (*PSSR), the program status data structure contains infor-
mation on the data area in error. If a message is issued to the requester, the
message identifies the data area in error.

You can specify a resulting indicator in positions 56 and 57 to be set on if an error
occurs during the operation. Positions 54-55 and 58-59 must be blank.

For further rules for the OUT operation, see “Data-Area Operations” on page 194.

See Figure 64 on page 277 for an example of the OUT operation.

Chapter 11. Operation Codes 317

PARM

PARM (ldentify Parameters)

Code

Factor 1 Factor 2 Result Field Indicators

PARM Target field Source field Parameter

318 RPG/400 Reference

The declarative PARM operation defines the parameters that compose a parameter
list (PLIST). PARM operations can appear anywhere in calculations as long as they
immediately follow the PLIST or CALL operation they refer to. PARM statements must
be in the order expected by the called program. One PARM statement, or as many
as 255 PARM statements, can follow a PLIST or CALL.

The PARM operation can be specified anywhere within calculations, including total
calculations. The control level entry (positions 7 and 8) can be blank or can
contain an L1 through L9 indicator, an LR indicator, or an LO entry to group the
statement in the appropriate section of the program. Conditioning indicator entries
(positions 9 through 17) are not allowed.

Factor 1 and factor 2 entries are optional. If specified, the entries must be the
same type (character or numeric) as specified in the result field. A literal or named
constant cannot be specified in factor 1. Factor 1 and factor 2 must be blank if the
result field contains the name of a multiple-occurrence data structure.

The result field must contain the name of a field, data structure, or array that is to
be the parameter. Also, the result field of a non-*ENTRY PLIST can contain an array
element. The result field can be numeric or character. The result field cannot
contain *IN, *INxx, *IN,xx, a label, a literal, a data-area name, a data-area data
structure name, a globally initialized data structure, a data structure with initialized
subfields, a data structure with a compile time array as a subfield, or a table name.
In addition, an array element, a data-structure subfield name, the name of a
compile-time array and the name of a program status or file information data struc-
ture (INFDS) are not allowed in the result field of PARM specified for an *ENTRY

PLIST. A field name can be specified only once in an *ENTRY PLIST.

If an array is specified in the result field, the area defined for the array is passed to
the called program. When a data structure with multiple occurrences is passed to
the called program, all occurrences of the data structure are passed as a single
field. However, if a subfield of a multiple occurrence data structure is specified in
the result field, only the current occurrence of the subfield is passed to the called
program.

Each parameter field has only one storage location; it is in the calling program.

The address of the storage location of the result field is passed to the called
program on a PARM operation. If the called program changes the value of a param-
eter, it changes the data at that storage location. When control returns to the
calling program, the value of the parameter in the calling program (that is, the result
field) has changed. Even if the called program ends in error after it changes the
value of a parameter, the changed value exists in the calling program. To preserve
the information passed to the called program for later use, specify in factor 2 the
name of the field that contains the information you want to pass to the called
program. Factor 2 is copied into the result field, and the storage address of the
result field is passed to the called program.

PARM

Because the program accesses the parameter fields by address, not field name,
the calling and called parameters do not have to use the same field hames for
fields that are passed. The attributes of the corresponding parameter fields in the
calling and called programs should be the same. If they are not, undesirable
results may occur.

When a CALL operation runs, the following occurs:

1. In the calling program, the contents of the factor 2 field of a PARM operation are
copied into the result field (receiver field) of the same PARM operation.

2. In the called program, after it receives control and after any normal program
initialization, the contents of the result field of a PARM operation are copied into
the factor 1 field (receiver field) of the same PARM operation.

3. In the called program, when control is returned to the calling program, the con-
tents of the factor 2 field of a PARM operation are copied into the result field
(receiver field) of the same PARM operation. This move does not occur if the
called program ends abnormally.

4. Upon return to the calling program, the contents of the result field of a PARM
operation in the calling program are copied into the factor 1 field (receiver field)
of the same PARM operation. This move does not occur if the called program
ends abnormally or if an error occurs on the CALL operation.

Note: If the receiver field is numeric, the value of the field to be placed in the
receiver field is added to a field of zeros and the sum is placed in the receiver field.
If the receiver field is character, the field to be placed in the receiver field is moved
(left-adjusted) into the receiver field, and the receiver field is padded with blanks.
For a discussion of how to call and pass parameters to a program through CL, see
the CL Programmer’s Guide.

Figure 75 on page 320 illustrates the PARM operation.

Chapter 11. Operation Codes 319

PLIST

PLIST (Identify a Parameter List)

Code Factor 1 Factor 2 Result Field Indicators

PLIST PLIST name

The declarative PLIST operation defines a unique symbolic name for a parameter
list to be specified in a CALL operation.

You can specify a PLIST operation anywhere within calculations, including within
total calculations and between subroutines. The control level entry (positions 7 and
8) can be blank or can contain an L1 through L9 indicator, an LR indicator, or an L0
entry to group the statement in the appropriate section of the program. The PLIST
operation must be immediately followed by at least one PARM operation. Condi-
tioning indicator entries (positions 9 through 17) are not allowed.

Factor 1 must contain the name of the parameter list. If the parameter list is the
entry parameter list of a called program, factor 1 must contain *ENTRY. Only one
*ENTRY parameter list can occur in a program. A parameter list is ended when an
operation other than PARM is encountered.

I I AN, AP DUPIPIPE. DU SO PP DU U ¢ DUV DAY A
CLONOINO2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
C*

Cx In the calling program, the CALL operation calls PROGZ2 and

C+ allows PROGZ to access the data in the parameter list fields.

C CALL 'PROG2' PLIST1

Cx*

Cx In the second PARM statement, when CALL is processed, the

Cx contents of factor 2, *IN27, are placed in the result field,

Cx BYTE. When PROG2 returns control, the contents of the result
Cx field, BYTE, are placed in the factor 1 field, *IN30. Note

C+x that factor 1 and factor 2 entries on a PARM are optional.

Cx*

c PLIST1 PLIST
c PARM AMT 52
C *IN30 PARM *IN27 BYTE 1

LI IS U SO UM ST DUPIE. PP, DU, OO c JUPIPPE. U A
CLONOINO2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
C CALL 'PROG2'

Cx In this example, the PARM operations immediately follow a

C+ CALL operation instead of a PLIST operation.

c PARM AMT 52

c *IN30 PARM *IN27 BYTE 1

Figure 75 (Part 1 of 2). PLIST/PARM Operations

320 RPG/400 Reference

PLIST

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

Cx*
Cx*
Cx*
C*
C*
C*
Cx*
Cx*
Cx*
C

C

C

In the called program, PROG2, =*ENTRY in factor 1 of the
PLIST statement identifies it as the entry parameter 1list.
When control transfers to PROG2, the contents of the result
fields (FLDC and FLDG) of the parameter list are placed in
the factor 1 fields (FLDA and FLDD). When the called program
returns, the contents of the factor 2 fields of the parameter
list (FLDB and FLDE) are placed in the result fields (FLDC
and FLDG). A1l of the fields are defined elsewhere in the

program.
*ENTRY PLIST
FLDA PARM FLDB FLDC
FLDD PARM FLDE FLDG

Figure 75 (Part 2 of 2). PLIST/PARM Operations

Chapter 11. Operation Codes 321

POST

POST (Post)

Code

Factor 1 Factor 2 Result Field Indicators

POST

Program device File name INFDS name ER _

322

RPG/400 Reference

The POST operation puts information in an INFDS (file information data structure).
The information is either on the status of a specific program device or I/O feedback
associated with a file.

In factor 1, you can specify a program device name to get information about that
specific program device. Use either a character field of length 10 or less, a char-
acter literal, or a character named constant. If you leave factor 1 blank, you get I/O
feedback information.

In factor 2, specify the name of a file. Information for this file is posted in the
INFDS associated with this file. If you specify a program device in factor 1, the file
must be defined as a WORKSTN file.

If you specify a file in factor 2, you can leave the result field blank. The INFDS
associated with this file will be used. You can specify a file in factor 2 and its
associated INFDS in the result field. If you leave factor 2 blank, you must specify an
INFDS in the result field; information from the file associated with this INFDS will be
posted.

In positions 56 and 57, you can specify an indicator that is set on if there is an
error. If no indicator is specified, control passes to your INFSR subroutine (if you
have specified one) or the default error/exception handler when an error/exception
occurs.

Even when a POST operation code is not processed, its existence in your program
can affect the way the RPG/400 language operates. Usually, the INFDS is updated
at each input and output operation or block of operations. However, if anywhere in
your program, you have specified a POST operation with factor 1 blank, then
RPG/400 updates the I/O Feedback Information area and the Device Dependent
Feedback Information area in the INFDS of any file only when you process a POST
operation for that file (except for the area *STATUS which is always updated). To
ensure that the DUMP operation code provides up-to-date information in this case,
issue a POST operation before the DUMP operation.

If a program has no POST operation code, or if it has only POST operation codes with
factor 1 specified, the INFDS is updated with each input/output operation or block of
operations. If RPG is blocking records, the information in the INFDS will be valid for
the last block of records processed. If you require more accurate information, do
not use record blocking. See “File Information Data Structure” on page 25 for
more information on record blocking. If you do not require feedback information
after every input/output operation, you may be able to improve performance by
using the POST operation only when you require the feedback information.

When a POST operation is processed, the associated file must be open. If you
specify a program device on the POST operation, it does not have to be acquired by
the file.

READ

READ (Read a Record)

Code

Factor 1 Factor 2 Result Field Indicators

READ (n)

File name, Record name Data structure _ER EOF

The READ operation reads the record, currently pointed to, from a full procedural file
(identified by an F in position 16 of the file description specifications).

Factor 2 must contain the name of a file. A record format name in factor 2 is
allowed only with an externally described file (E in position 19 of the file description
specifications). It may be the case that a READ-by-format-name operation will
receive a different format than the one you specified in factor 2. If so, your READ
operation ends in error.

The result field can contain the name of a data structure into which the record is
read only if the file named in factor 2 is a program described file (identified by an F
in position 19 of the file description specifications). See “File Operations” on

page 196 for information on how data is transferred between the file and the data
structure.

If a READ operation is successful, the file is positioned at the next record that satis-
fies the read. If either indicator is set on, you must reposition the file (by a “CHAIN
(Random Retrieval from a File),” “SETLL (Set Lower Limit),” or “SETGT (Set
Greater Than)” operation).

If the file from which you are reading is an update disk file, you can specify an N in
position 53 to indicate that no lock should be placed on the record when it is read.
See the RPG/400 User’s Guide for more information.

You can specify an indicator in positions 56 and 57 to be set on if the READ opera-
tion is not completed successfully. If an error occurs when no indicator is specified,
control passes to your INFSR subroutine (if specified) or the default error/exception
handler.

You must specify an indicator in positions 58 and 59 to signal whether end of file
occurred on the READ operation. The file must be repositioned after the indicator is
set on to process any further successful sequential operation (for example, READ or
READP) to the file. This indicator is set on or off every time the READ operation is
performed.

Figure 76 on page 324 illustrates the READ operation.

When you specify a multiple device file in factor 2, the READ operation does one of:

¢ Reads data from the device specified in the most recent NEXT operation (if such
a NEXT operation has been processed).

* Accepts the first response from any device that has been acquired for the file,
and that was specified for “invite status” with the DDS keyword INVITE. If there
are no invited devices, the operation receives an end of file. The input is proc-
essed according to the corresponding format. If the device is a workstation, the
last format written to it is used. If the device is a communications device, you
can select the format.

Chapter 11. Operation Codes 323

READ

* .

C=*
Cx*
Cx*
Cx*
C*
Cx*
Cx*
C

C

Cx*
Cx*
C*
Cx*
C*
Cx*
Cx*
C*
C*
C

C

Cx*
C

Refer to the ICF Programmer’s Guide for more information on format selection
processing for an ICF file. If you are using a BSC, CMN, or MXD file refer to the
System/38 CL Reference Manual, for information on the FMTSLT parameter on
the CRTBSCF, CRTCMNF, or ADDCMNDEVE command respectively.

The READ operation will stop waiting after a period of time in which no input is
provided, or when one of the following CL commands has been entered with
the controlled option specified:

— ENDJOB (End Job)

— ENDSBS (End Subsystem)

— PWRDWNSYS (Power Down System)

— ENDSYS (End System).

The error indicator specified in positions 56 and 57 is set on. See the ICF
Programmer’s Guide for a discussion of the WAITRCD parameter on the com-
mands to create or modify a file. This parameter controls the length of time the
READ operation waits for input.

When you specify a format name in factor 2, and the format name is associated
with a multiple device file, data is read from the device identified by the field speci-
fied in the ID entry on the file continuation specifications. If there is no such entry,
data is read from the device used in the last successful input operation.

B R TN, . FUPIE R S I PUMIE U ¢ DRV R AN
CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComments++++++

READ retrieves the next record from the file FILEA, which must
be a full procedural file. Indicator 61 is set on if end of
file occurs on READ, or if end of file has occurred previously
and the file has not been repositioned. When indicator 61
is set on, the program branches to the Tabel (EOF) specified
in the GOTO statement.

READ FILEA 61 END OF FILE
61 GOTO EOF

READ retrieves the next record of the type REC1 (factor 2)

from an externally described file. (REC1 is a record format
name.) Indicator 64 is set on if end of file occurs on READ, or
or if it has occurred previously and the file has not been
repositioned. When indicator 64 is set on, the program

branches to the Tabel (EOF) specified in the GOTO statement.

N in position 53 indicates that the record is not locked.

READ REC1 N 64 END OF FILE
64 GOTO EOF

EOF TAG

Figure 76. READ Operation

324

RPG/400 Reference

READC

READC (Read Next Changed Record)

Code

Factor 1 Factor 2 Result Field Indicators

READC

Record name _ER EOF

The READC operation can be used only with an externally described WORKSTN file to
obtain the next changed record in a subfile. Factor 2 is required and must be the
name of a record format defined as a subfile by the SFILE keyword on the file
description specifications. (See “Continuation Line Summary Chart” for information
on the SFILE keyword.)

For a multiple device file, data is read from the subfile record associated with a
program device; the program device is identified by the field specified in the 1D
entry (on the file specifications continuation line). If there is no such entry, data is
read from the program device used for the last successful input operation.

You can specify a resulting indicator in positions 56 and 57 to be set on if an error

occurs while the operation is running. A resulting indicator in positions 58 and 59 is
required; it is set on when there are no more changed records in the subfile.

Chapter 11. Operation Codes 325

READE

READE (Read Equal Key)

Code

Factor 1 Factor 2 Result Field Indicators

READE (n)

Search argument File name, Record name Data structure _EREOF

326

RPG/400 Reference

The READE operation retrieves the next sequential record from a full procedural file
(identified by an F in position 16 of the file description specifications) if the key of

the record matches the search argument. If the key of the record does not match
the search argument, the indicator that must be specified in positions 58 and 59 is
set on, and the record is not returned to the program.

Factor 1, the search argument, is optional and identifies the record to be retrieved.
It can be a field name, a literal, a named constant, or a figurative constant. You
can also specify a KLIST name in factor 1 for an externally described file. If factor 1
is left blank and the full key of the next record is equal to that of the current record,
the next record in the file is retrieved. The full key is defined by the record format
or file used in factor 2.

Note: |If factor 1 equals the key of the current record or if factor 1 is not specified,
the key comparison takes place at the Data Management level; otherwise, it takes
place within the RPG/400 program. If the file being read is defined as update and
the compare is by RPG, a temporary lock on the next record is requested and the
search argument is compared to the key of that record. If the record is already
locked, the program must wait until the record is available before obtaining the tem-
porary lock and making the comparison. If the comparison is unequal, the record-
not-found indicator is turned on, and the temporary record lock is removed. If no
lock (N in position 53) is specified, a temporary lock is not requested.

Factor 2 must contain the name of the file or record format to be retrieved. A
record format name in factor 2 is allowed only with an externally described file
(identified by an E in position 19 of the file description specifications).

The result field can contain the name of a data structure into which the record is
read only if the file named in factor 2 is a program described file (identified by an F
in position 19 of the file description specifications). See “File Operations” on

page 196 for a description of the way data is transferred between the file and data
structure.

If the file you are reading is an update disk file, you can specify an N in position 53
to indicate that no lock should be placed on the record when it is read. See the
RPG/400 User’s Guide for more information.

You can specify a resulting indicator in positions 56 and 57 to be set on if the oper-
ation does is completed successfully. You must specify a resulting indicator in
positions 58 and 59. The indicator is set on if a record is not found with a key
equal to the search argument or if end of file occurs. If a READE operation is not
successful, you must reposition the file (for example, by a “CHAIN (Random
Retrieval from a File),” “SETGT (Set Greater Than),” or “SETLL (Set Lower Limit)”
operation).

If factor 1 is specified and one or more key fields in the file being read from are
defined with ALTSEQ, ABSVAL, DIGIT, or ZONE, the result of the read operation may
differ from that expected. The reason is the content of the field on which the

READE

access path is built may not be the same as the content that the READE operation is
using for its internal comparison.

A READE (with factor 1 specified) that immediately follows an OPEN operation or an
EOF condition retrieves the first record in the file if the key of the record matches the
search argument. A READE (with no factor 1 specified) that immediately follows an
OPEN operation or an EQOF condition results in an error condition. The error indicator,
if specified, in positions 56 and 57 is set on. No further /0O operations can be
issued against the file until it is successfully closed and reopened.

Note: If the key used contains a numeric (packed or zoned) field, the search argu-
ment must exactly match the key field. For example, if the physical file uses a
packed key of X'123C"' for +123. and the search argument is 123, READE will use
X'123F' and EOF will be returned.

Chapter 11. Operation Codes 327

READE

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
Cx*

Cx With Factor 1 Specified...

Cx*

C+ The READE operation retrieves the next record from the file

C+x FILEA and compares its key to the search argument, KEYFLD.

Cx Indicator 55 is set on if KEYFLD is not equal to the key of

Cx the record read or if end of file is encountered.

Cx*

C KEYFLD READEFILEA 55 NOT EQUAL

Cx*

C+ The READE operation retrieves the next record of the type REC1
C+x from an externally described file and compares the key of the
C+ record read to the search argument, KEYFLD. (REC1 is a record
C+ format name.) Indicator 56 is set on if KEYFLD is not equal to
Cx the key of the record read or if end of file is encountered.

C KEYFLD READEREC1 56 NOT EQUAL
C*

C+ With No Factor 1 Specified...

C=*

C+ The READE operation retrieves the next record in the access

Cx path from the file FILEA if the key value is equal to

C+ the key value of the record at the current cursor position.

Cx If the key values are not equal, indicator 55 is set on.

C READEFILEA 55 NOT EQUAL
Cx*

C+ The READE operation retrieves the next record in the access

C+ path from the file FILEA if the key value equals the key value
Cx of the record at the current position. REC1 is a record format
Cx name. Indicator 56 is set on if the key values are unequal.
Cx N in position 53 indicates that the record is not locked.

C READEREC1 N 56 NOT EQUAL

Figure 77. READE Operation

328 RPG/400 Reference

READP

READP (Read Prior Record)

Code

Factor 1 Factor 2 Result Field Indicators

READP (n)

File name, Record name Data structure _ ER BOF

The READP operation reads the prior record from a full procedural file (identified by
an F in position 16 of the file description specifications).

Factor 2 must contain the name of a file or record format to be read. A record
format name in factor 2 is allowed only with an externally described file. If a record
format name is specified in factor 2, the record retrieved is the first prior record of
the specified type. Intervening records are bypassed.

The result field can contain the name of a data structure into which the record is
read only if the file named in factor 2 is a program described file (identified by an F
in position 19 of the file description specifications). See “File Operations” on

page 196 for how data is transferred between the file and data structure.

If a READP operation is successful, the file is positioned at the next record that satis-
fies the read. If a READP operation is not successful, you must reposition the file
(for example, by a “CHAIN (Random Retrieval from a File)” or “SETLL (Set Lower
Limit)” operation). You can specify an indicator in positions 56 and 57 to be set on
if the READP operation is not completed successfully.

If the file from which you are reading is an update disk file, you can specify an N in
position 53 to indicate that no lock should be placed on the record when it is read.
See the RPG/400 User’s Guide for more information.

You must specify an indicator in positions 58 and 59 to be set on when no prior
records exist in the file (beginning of file condition). If the file is not repositioned
after this indicator is set on, the indicator is set for every subsequent READP opera-
tion to the file.

You must be reposition the file after the indicator is set on to process any further
successful sequential operation (for example, “READ (Read a Record)”) to the file.

Figure 78 on page 330 shows READP operations with a file name and record format
name specified in factor 2.

Chapter 11. Operation Codes 329

READP

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

Cx*
Cx*
Cx*
C*
C*
C

C

Cx*
Cx*
Cx*
C*
C=*
Cx*
Cx*
C

C

C*
C

The READP operation reads the prior record from FILEA.
Indicator 71 is set on if beginning of file is encountered.
When indicator 71 is set on, the program branches to the
label BOF specified in the GOTO operation.

READPFILEA 71 BOF
71 GOTO BOF BEG OF FILE

The READP operation reads the next prior record of the type
REC1 from an externally described file. (RECI is a record
format name.) Indicator 72 is set on if beginning of file is
encountered during processing of the READP operation. When
indicator 72 is set on, the program branches to the label BOF
specified in the GOTO operation.

READPREC1 7272 = BOF
72 GOTO BOF

BOF TAG

Figure 78. READP Operation

330

RPG/400 Reference

REDPE

REDPE (Read Prior Equal)

Code

Factor 1 Factor 2 Result Field Indicators

REDPE (n)

Search argument File name, Record name Data structure _ERBOF

The REDPE operation retrieves the next prior sequential record from a full procedural
file if the key of the record matches the search argument. If the key of the record
does not match the search argument, the indicator in positions 58-59 is set on and
the record is not returned to the program.

Factor 1, the search argument, is optional and identifies the record to be retrieved.
It can be a field name, a literal, a named constant, or a figurative constant. You
can also specify a KLIST name in factor 1 for an externally defined file. If factor 1 is
left blank and the full key of the next prior record is equal to that of the current
record, the next prior record in the file is retrieved. The full key is defined by the
record format or file used in factor 2.

Factor 2 must contain the name of the file or record format to be retrieved. A
record format name in factor 2 is allowed only with an externally described file
(identified by an E in position 19 of the file description specifications). The Result
Field can contain the name of a data structure into which the record is read only if
the file named in factor 2 is a program described file (identified by an F in position
19 of the file description specifications). See “File Operations” on page 196 for a
description of the way data is transferred between the file and data structure.

If the file from which you are reading is an update disk file, you can specify an N in
position 53 to indicate that no lock should be placed on the record when it is read.
See the RPG/400 User’s Guide for more information.

You can specify a resulting indicator in positions 56 and 57 to be set on if the oper-
ation is not completed successfully. You must specify a resulting indicator positions
58 and 59. The indicator is set on if a record is not found with a key equal to the
search argument, or if beginning of file is encountered. If a REDPE operation is not
successful, you must reposition the file (for example, by a “CHAIN (Random
Retrieval from a File)” or “SETLL (Set Lower Limit)” operation).

Note: If factor 1 equals the key of the current record or if factor 1 is not specified,
the key comparison takes place at the Data Management level; otherwise, it takes
place within the RPG/400 program. If the file being read is defined as update and
the compare is by RPG, a temporary lock on the prior record is requested and the
search argument is compared to the key of that record. If the record is already
locked, the program must wait until the record is available before obtaining the tem-
porary lock and making the comparison. If the comparison is unequal, the record-
not-found indicator is turned on, and the temporary record lock is removed. If no
lock (N in position 53) is specified, a temporary lock is not requested.

If factor 1 is specified and one or more key fields in the file being read from are
defined with ALTSEQ, ABSVAL, DIGIT, or ZONE, the result of the read operation may
differ from that expected. The reason is that the content of the field on which the
access path is built may not be the same as the content that the REDPE operation is
using for its internal comparison.

Chapter 11. Operation Codes 331

REDPE

332

RPG/400 Reference

A REDPE (with factor 1 specified) that immediately follows an OPEN operation or a BOF
condition returns BOF. A REDPE (with no factor 1 specified) that immediately follows
an OPEN operation or a BOF condition results in an error condition. The error indi-
cator, if specified, in positions 56 and 57 is set on. The file must be positioned
(using “CHAIN (Random Retrieval from a File),” “SETLL (Set Lower Limit),” “READ
(Read a Record),” “READP (Read Prior Record),” or “READE (Read Equal Key)”
(with factor 1 specified)) prior to issuing a REDPE operation with factor 1 blank. A
SETGT operation code should not be used to position the file prior to issuing a REDPE
as this results in a record-not-found condition (because the record previous to the
current record never has the same key as the current record after a SETGT is
issued).

If the key used contains a numeric (packed or zoned) field, the search argument
must exactly match the key field. For example, if the physical file uses a packed
key of X'123C" for +123. and the search argument is 123, REDPE will use X'123F'
and BOF will be returned.

REDPE

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
Cx*

Cx With Factor 1 Specified...

Cx*

Cx The previous record is read and the key compared to FIELDA.
Cx Indicator 99 is set on if the record's key does not match

C+ FIELDA.

C FIELDA REDPEFILEA 99

Cx*

C* The previous record is read from FILEB and the key compared
Cx to FIELDB. The record is placed in data structure DS1. If
Cx the record key does not match FIELDB, indicator 99 is set on.
C FIELDB REDPEFILEB DS1 99

Cx*

C* The previous record from record format RECA is read, and

C* the key compared to FIELDC. Indicator 88 is set on if the
C* operation is not completed successfully, and 99 is set on if
Cx the record key does not match FIELDC.

C FIELDC REDPERECA 8899
Cx*

C+ With No Factor 1 Specified...

Cx*

C* The previous record in the access path is retrieved if its
C* key value equals the key value of the current record.

C* Indicator 99 is set on if the key values are not equal.

C REDPEFILEA 99

C*

C* The previous record is retrieved from FILEB if its key value
C* matches the key value of the record at the current position
Cx in the file. The record is placed in data structure DS1.

C* Indicator 99 is set on if the key values are not equal.

C REDPEFILEB DS1 99

Cx*

C* The previous record from record format RECA is retrieved if
Cx its key value matches the key value of the current record in
C* the access path. Indicator 88 is set on if the operation is
C* not successful; 99 is set on if the key values are unequal.
C REDPERECA 8899

Figure 79. REDPE Operation

Chapter 11. Operation Codes 333

REL

REL (Release)

Code Factor 1 Factor 2 Result Field Indicators
REL Program device File name _ER _

334

The REL operation releases the program device specified in factor 1 from the mul-
tiple device WORKSTN file specified in factor 2.

In factor 1, specify the program device name. Use either a character field of length
10 or less, a character literal, or a named constant. In factor 2, specify the file
name.

You can specify an indicator in positions 56 and 57 that is set on when an error

occurs. If you do not specify one and an error occurs, control passes to your
INFSR subroutine (if specified) or the default error/exception handler.

When there are no program devices acquired to a WORKSTN file, the next READ-by-
file-name or cycle-read gets an end-of-file condition. You must decide what the

program does next.

To release a record lock, use the UNLCK operation. See the UNLCK operation for

RPG/400 Reference

more information about unlocking data areas and releasing record locks for update
disk files.

The REL operation is valid only for multiple device WORKSTN files.

RESET (Reset)

RESET

Code

Factor 1 Factor 2 Result Field Indicators

RESET *NOKEY Structure or Variable

The RESET operation sets elements in a structure (record format, data structure,
array, or table), or a variable (field, subfield, or indicator) to its initial value. The
initial value for a variable is the value the variable had at the end of the *INIT
operation of the program. This value can be set using data structure initialization,
or you can use the initialization subroutine to assign an initial value to the structure
or variable. When RESET is specified for a structure or variable, a snapshot of the
initial value of that variable or structure is taken at the end of the *INIT operation
after =INZSR (initialization subroutine) is processed. See Figure 4 on page 14 for
more information. This value is then used to reset the structure or variable.

Factor 1 must be blank unless factor 2 contains a record format name. In this
case, factor 1 can contain *NOKEY, which indicates that all fields except key fields
are to be reset to their initial values.

Factor 2 contains the structure or variable to be reset to its initial value. It can
contain one of: a record format, data structure name, array name, table name, field
name, subfield, array element, or indicator name. If a record format name or a
single occurrence data structure is specified, all fields are reset (in the order they
are declared within the structure). In the case of a multiple-occurrence data struc-
ture, all fields in the current occurrence are reset. If a table name is specified, the
current table element is reset; in the case of an array name, the entire array is
reset. If an array element (including indicators) is specified in factor 2 using an
array index, only the element specified is reset.

When the RESET operation is applied to a record format name, only those fields that
are output in that record format are affected. For WORKSTN (positions 40-46) file
record formats, only those fields with a usage of output or both are affected. All
field-conditioning indicators are affected by the operation. Fields in DISK, SEQ, or
PRINTER file record formats are affected only if the record format is output in the
program. Input-only fields are not affected by the RESET operation. By definition,
they assume new values at the next input operation.

The RESET operation is used in conjunction with data structure initialization and the
initialization subroutine (*INZSR). You can use both data structure initialization and
the *INZSR to set the initial value of a field or structure. The value is then used to
reset the field or structure if it appears in factor 2 of a RESET operation. For
example, you can use the *INZSR to set the values of several fields in a record
format, and then later in the program use the RESET operation against the record
format to reset the values of the fields. The snapshot of the field value for the
RESET operation is taken at the end of the initialization step in the program, after the
*INZSR is run. Any changes made to the values of variables in the *INZSR override
any data structure initialization, and the value the variable has at the end of the
initialization step is used to save the reset snapshot.

This operation results in an increase in the amount of storage required by the
program because the initial values of all structures and variables that are reset
must be saved. However, the amount of storage declared is reduced where pos-
sible. For example, if a data structure is reset and a subfield within that data struc-

Chapter 11. Operation Codes 335

RESET

336

RPG/400 Reference

ture is also reset, the save area for the subfield is based on the same storage as
the data structure save area. Note that, if a single occurrence of a multiple-
occurrence data structure is reset, a save area for the entire data structure (all
occurrences) is declared. A save area is created for a structure or variable only if it
appears in factor 2 of a RESET operation. If no RESET operations are coded in the
program, then no additional storage is required. If a RESET occurs during the initial-
ization routine of the program, an error message will be issued at run time. If a
GOTO or CABxx is used to leave subroutine calculations during processing of the
*INZSR, or if control passes to another part of the cycle as the result of error proc-
essing, the part of the initialization step which initializes the save areas will never
be reached. In this case, an error message will be issued for all RESET operations
in the program at run time.

For more information, see “Initialization” in Chapter 9 of the RPG/400 User’s Guide
and the “CLEAR (Clear)” operation code.

RESET

FFilenameIPEAF....R1enLK1AIOvKlocEDevice+...... KExit++Entry+A....U..
FEXTFILE 0 E DISK

LI [- U DU DA SUP T UM AP - DRPRPIPE R A
Namedconstant+++++++++C......... Fldnme.............
I*

I[* The file EXTFILE contains one record format RECFMT containing
I* the character fields CHAR1 and CHARZ2 and the numeric fields
I* NUM1 and NUM2.

IDS1 IDS

II "MONDAY' 1 8 DAY1
II '"THURSDAY'' 9 16 DAY2
I 17 22 JDATE

CLONOINO2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
Cx*

Cx The following operation blank DAY1l, DAY2, and JDATE.

C CLEARDS1

Cx The following operation will set DAY1l, DAY2, and JDATE to their
Cx initial values of 'MONDAY', 'THURSDAY', and UDATE respectively.
Cx The initial value of UDATE for JDATE is set in the *INZSR.

C RESETDS1

Cx The following operation will set CHAR1 and CHAR2 to blanks and
Cx NUM1 and NUM2 to zero.

C CLEARRECFMT

Cx The following operation will set CHAR1, CHAR2, NUMI1, and

C* NUM2 to their initial values of 'NAME', 'ADDRESS', 1, and 2

Cx respectively. These initial values are set in the *INZSR.

Cx*

C RESETRECFMT
Cx*
C *INZSR BEGSR

C MOVELUDATE JDATE
C MOVEL ' NAME 'CHAR1
C MOVEL'ADDRESS 'CHAR2
C Z-ADD1 NUM1
C Z-ADD2 NUM2
C ENDSR

Figure 80. RESET Operation

Chapter 11. Operation Codes 337

RETRN

RETRN (Return to Caller)

Code

Factor 1 Factor 2 Result Field Indicators

RETRN

338 RPG/400 Reference

The RETRN operation causes a return to the caller as follows:

1. The halt indicators are checked. If a halt indicator is on, the program ends
abnormally. (All open files are closed, an error return code is set to indicate to
the calling routine that the program has ended abnormally, and control returns
to the calling routine.)

2. If no halt indicators are on, the LR indicator is checked. If LR is on, the program
ends normally. (Locked data area structures, arrays, and tables are written,
and external indicators are reset.)

3. If no halt indicator is on and LR is not on, the program returns to the calling
routine. Data is preserved for the next time the program is run. Files and data
areas are not written out.

ROLBK (Roll Back)

ROLBK

Code

Factor 1

Factor 2

Result Field

Indicators

ROLBK

ER

The ROLBK operation:

» Eliminates all the changes to your files that have been specified in output oper-
ations since the previous COMIT or ROLBK operation (or since the beginning of
operations under commitment control if there has been no previous COMIT or

ROLBK operation).

* Releases all the record locks for the files you have under commitment control.
» Repositions the file to its position at the time of the previous COMIT operation
(or at the time of the file OPEN, if there has been no previous COMIT operation.)

The file changes and the record-lock releases apply to all the files under commit-
ment control in your routing step, whether the changes have been requested by the
program issuing the ROLBK operation or by another program in the same routing
step. The program issuing the ROLBK operation does not need to have any files
under commitment control. For example, suppose program A calls program B and
program C. Program B has files under commitment control, and program C does
not. A ROLBK operation in program C still affects the files changed by program B.

The optional indicator in positions 56 and 57 is set on if the operation is not suc-

cessfully completed.

Chapter 11. Operation Codes 339

SCAN

SCAN (Scan Ch

aracter String)

Code Factor 1 Factor 2 Result Field Indicators
SCAN Comparator Base string:start Left-most posi- _ERFD
string:length tion

340 RPG/400 Reference

The SCAN operation scans a character string (base string) contained in factor 2 for a
substring (compare string) contained in factor 1. The scan begins at a specified
location contained in factor 2 and continues for the length of the compare string
which is specified in factor 1.

Factor 1 must contain either the compare string or the compare string, followed by
a colon, followed by the length. The compare string portion of factor 1 must be
character, and can contain one of: a field name, array element, named constant,
data structure name, literal, or table name. The length portion must be numeric
with no decimal positions and can contain one of: a named constant, array element,
field name, literal, or table name. If no length is specified, it is that of the compare
string.

Factor 2 must contain either the base string or the base string, followed by a colon,
followed by the start location of the SCAN. The base string portion of factor 2 must
be character, and can contain one of: a field name, array element, named constant,
data structure name, literal, or table name. The start location portion of factor 2
must be numeric with no decimal positions and can be a named constant, array
element, field name, literal, or table name. If no start location is specified, a value
of 1 is used.

The result field contains the numeric value of the leftmost position of the compare
string in the base string, if found. It must be numeric with no decimal positions and
can contain one of: a field name, array element, array name, or table name. If no
result field is specified, a resulting indicator in positions 58 and 59 must be speci-
fied. The result field is set to O if the string is not found. If the result field contains
an array, each occurrence of the compare string is placed in the array with the
leftmost occurrence in element 1. The array elements following the element con-
taining the rightmost occurrence are all zero. The result array should be as large
as the character field length of the base string specified in factor 2.

Note: The strings are indexed from position 1. If the start position is greater than
1, the result field contains the position of the compare string relative to the begin-
ning of the source string, not relative to the start position. Figurative constants
cannot be used in the factor 1, factor 2, or result fields. No overlapping within data
structures is allowed for factor 1 and the result field or factor 2 and the result field.

A resulting indicator in positions 58 and 59 can be specified to be set on if the
string being scanned for is found. A resulting indicator in positions 56 and 57 can
be specified to be set on if there is an error during the SCAN operation. An error
occurs if the start position is greater than the length of factor 2 or if the value of
factor 1 is too large. If no error indicator is specified and an error condition occurs,
*PSSR, the error/exception handling subroutine runs (if it is specified in the
program). If it is not specified, an error message is issued.

The SCAN begins at the leftmost character of factor 2 (as specified by the start
location) and continues character by character, from left to right, comparing the

*

SCAN

characters in factor 2 to those in factor 1. If the result field is not an array, the
SCAN operation will locate only the first occurrence of the compare string. To con-
tinue scanning beyond the first occurrence, use the result field from the previous
SCAN operation to calculate the starting position of the next SCAN. If the result field
is a numeric array, as many occurrences as there are elements in the array are
noted. If no occurrences are found, the result field is set to zero; if the result field
is an array, all its elements are set to zero.

Leading, trailing, or embedded blanks specified in the compare string are included
in the SCAN operation.

The SCAN operation is case-sensitive. A compare string specified in lowercase will
not be found in a base string specified in uppercase.

R I SR, G TP S . Y R DR S AN

CLONOINO2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

C=*
C*
Cx*
Cx*
C*
c
C*
Cx*
Cx*
Cx*
C*
C
C
C
Cx*
Cx*
C*
C*
Cx*
C
C
C
C
C*

The SCAN operation finds the substring 'ABC' starting in

position 3 in factor 2; 3 is placed in the result field.

Indicator 90 is set on because the string is found. Because

no starting position is specified, the default of 1 is used.
"ABC' SCAN 'XCABCD' RESULT 90

This SCAN operation scans the string in factor 2 for an
occurrence of the string in factor 1 starting at position 3.
The operation places the values 5 and 6 in the first and
second elements of the array. Indicator 90 is set on.
MOVE 'ARRAYY' FIELD1 6
MOVE 'Y' FIELD2 1
FIELD2 SCAN FIELD1:3 ARRAY 90

This SCAN operation scans the string in factor 2, starting
at position 2, for an occurrence of the string in factor 1
for a Tength of 4. Because 'TOOL' is not found in FIELDI1,
INT is set to zero and indicator 90 is set off.

MOVE 'TESTING' FIELD1 7

Z-ADD2 X 10
MOVEL'TOOL' FIELD2 5
FIELD2:4 SCAN FIELD1:X INT 20 90

Figure 81. SCAN Operation

Chapter 11. Operation Codes 341

SELEC

SELEC (Begin a Select Group)

Code

Factor 1 Factor 2 Result Field Indicators

SELEC

342 RPG/400 Reference

The select group conditionally processes one of several alternative sequences of
operations. It consists of:

e A SELEC statement

e Zero or more WHxx groups
e An optional OTHER group

e ENDSL or END statement.

After the SELEC operation, control passes to the statement following the first WHxx
condition that is satisfied. All statements are then executed until the next WHxx
operation. Control passes to the ENDSL statement (only one WHxx is executed). If
no WHxx condition is satisfied and an OTHER operation is specified, control passes to
the statement following the O0THER operation. If no WHxx condition is satisfied and no
OTHER operation is specified, control transfers to the statement following the ENDSL
operation of the select group.

Conditioning indicators can be used on the SELEC operation. If they are not satis-
fied, control passes immediately to the statement following the ENDSL operation of
the select group.

The select group can be specified anywhere in calculations. It can be nested within
IF, DO, or other select groups. The IF and DO groups can be nested within select
groups.

If a SELEC operation is specified inside a select group, the WHxx and OTHER oper-
ations apply to the new select group until an ENDSL is specified.

SELEC

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

Cx*

Cx In the following example, if X equals 1, do the operations in
C* sequence 1 (note that no END operation is needed before the
C* next WHxx); if X does NOT equal 1, and if Y=2 and X<10, do the

C* operations in sequence 2.
C* the operations in sequence 3.

Cx*

C

C X
C

C

C

C Y
C X
C

C

C

C

Cx*

Cx*

Cx*

Cx*

C*

C*

C KEY
C N1o

C X
C

C Y
C

C

C

Figure 82. SELEC Operation

SELEC

WHEQ 1
Z-ADDA
MOVE C

WHEQ 2
ANDLT10

OTHER

ENDSL

then control passes to the ADD operation.
off, then the select group is processed.

CHAINFILE
SELEC
WHEQ 1
WHEQ 2

ENDSL
ADD 1

If neither condition is true, do

seq 1

seq 2

seq 3

The following example shows a select group with conditioning
indicators. After the CHAIN operation, if indicator 10 is on,
If indicator 10 is

10

seq 1

seq 2

Chapter 11. Operation Codes

343

SETGT

SETGT (Set Greater Than)

Code Factor 1 Factor 2 Result Field Indicators
SETGT Search argument File name NR ER _

344 RPG/400 Reference

The SETGT operation positions a file at the next record with a key or relative record
number that is greater than the key or relative record number specified in factor 1.
The file must be a full procedural file (identified by an F in position 16 of the file
description specifications).

Factor 1 is required. If the file is accessed by key, factor 1 can be a field name, a
named constant, a figurative constant, or a literal that is used as the search argu-
ment in positioning a file. You can also specify a “KLIST (Define a Composite
Key)” name in factor 1 for an externally described file that is positioned by key. If
the file is accessed by relative record number, factor 1 must be an integer literal,
named constant, or field.

Factor 2 is required and must be either a file name or, in the 0S/400 system, a
record format name. A record format name in factor 2 is allowed only with an
externally described file.

You can specify a resulting indicator in positions 54 and 55 to be set on if no
record is found with a key or relative record number that is greater than the search
argument specified in factor 1. You can specify any valid resulting indicator in posi-
tions 56 and 57 to be set on if an error occurs during processing of the operation.

If the SETGT operation is not successful (no-record-found condition), the file is posi-
tioned to the end of the file.

Figurative constants can also be used to position the file. When used with a file
with a composite key, figurative constants are treated as though each field of the
key contained the figurative constant value. In most cases, *LOVAL positions the file
so that the first read retrieves the record with the lowest key. In most cases, *HIVAL
positions the file so that a READ receives an end-of-file indication; a subsequent
READP retrieves the last record in the file. However, note the following cases for
using *LOVAL and *HIVAL with numeric keys:

¢ With an externally described file that has a key in descending order, *HIVAL
positions the file so that the first read operation retrieves the first record in the
file (the record with the highest key), and *LOVAL positions the file so that a
READP operation retrieves the last record in the file (the record with the lowest

key).

* .

Cx*
Cx*
Cx*
Cx*
C*
Cx*
Cx*
Cx*
C

C

C*
C*
Cx*
C=*
Cx*
Cx*
Cx*
C*
Cx*
Cx*
C

C

SETGT

e If a record is added or a key field is altered after a SETGT operation with either
*LOVAL or *HIVAL, the file may no longer be positioned to the record with the
lowest or highest key.

e x| OVAL represents a key value X'99...9D’ and *HIVAL represents a key value
X'99...9F'. When a program described file has a packed decimal key specified
in the file specifications but the actual file key field contains character data,
records may have keys that are less than *LOVAL or greater than *HIVAL. When
a key field contains unsigned binary data, *LOVAL may not be the lowest key.

Following the SETGT operation, a file is positioned so that it is immediately before
the first record whose key or relative record number is greater than the search
argument specified in factor 1. You retrieve this record by reading the file. Before
you read the file, however, records may be deleted from the file by another job or
through another file in your job. Thus, you may not get the record you expected.
For information on preventing unexpected modification of your files, see the dis-
cussion of allocating objects in the CL Reference.

B R TN . RPN U S I PUMIE U ¢ DRV R AR
CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

This example shows how to position the file so READ will read
the next record. The search argument, KEY, specified for the
SETGT operation has a value of 98; therefore, SETGT positions
the file before the first record of file format FILEA that
has a key field value greater than 98. The file is positioned
before the first record with a key value of 100. The READ
operation reads the record that has a value of 100 in its key
field.

KEY SETGTFILEA GREATER THAN

READ FILEA 64READ NEXT

This example shows how to read the last record of a group of
records with the same key value and format from a program
described file. The search argument, KEY, specified for the
SETGT operation positions the file before the first record of
file FILEB that has a key field value greater than 70.
The file is positioned before the first record with a key
value of 80. The READP operation reads the Tast record that
has a value of 70 in its key field.

KEY SETGTFILEB GREATER THAN

READPFILEB 64READ LAST

Figure 83 (Part 1 of 4). SETGT Operation

Chapter 11. Operation Codes 345

SETGT

Key Field Key Field
Values Values
97 50
97 60
97 70
97 (READP)—> 70
FILEA (SETGT)—» FILEB
98 80
(SETGT)—>»
(READ)—> 100 80
100 80
100 90
101 90
101 91

Figure 83 (Part 2 of 4). SETGT Operation

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
C*

Cx This example shows the use of *LOVAL. The SETGT operation

Cx positions the file before the first record of a file in

Cx ascending order. The READ operation reads the first record

Cx (key value 97).

C *LOVAL SETGTRECDA GREATER THAN
C READ RECDA 64READ NEXT

Cx*

Cx*

C+ This example shows the use of *HIVAL. The SETGT operation

Cx positions the file after the last record of a file in ascending
C+ order. The READP operation reads the last record (key value 91).
C *HIVAL SETGTRECDB GREATER THAN
c READPRECDB 64READ LAST

Figure 83 (Part 3 of 4). SETGT Operation

346 RPG/400 Reference

Key Field
Values
(SETGT) >

(READ)— 97

97

97

97

98

100

100

100

101

101

Key Field
Values

50

60

70

70

RECDA
Record

80

Format

80

80

90

90

(READP)—»

91

(SETGT) >

Figure 83 (Part 4 of 4). SETGT Operation

RECDB
Record
Format

SETGT

Chapter 11. Operation Codes

347

SETLL

SETLL (Set Lower Limit)

Code Factor 1 Factor 2 Result Field Indicators
SETLL Search argument File name NR ER EQ

348 RPG/400 Reference

The SETLL operation positions a file at the next record that has a key or relative
record number that is greater than or equal to the search argument (key or relative
record number) specified in factor 1. The file must be a full procedural file (identi-
fied by an F in position 16 of the file description specifications).

Factor 1 is required. If the file is accessed by key, factor 1 can be a field name, a
named constant, a figurative constant, or a literal that is used as the search argu-
ment in positioning the file. You can also specify a KLIST name in factor 1 for an
externally described file that is positioned by key. If the file is accessed by relative
record number, factor 1 must contain an integer literal, named constant, or numeric
field with no decimal positions.

Factor 2 is required and can contain either a file name or a record format name. A
record format name in factor 2 is allowed only with an externally described file.

The resulting indicators reflect the status of the operation. If an indicator is speci-
fied in positions 54 and 55, it is set on when the search argument is greater than
the highest key or relative record number in the file. If an indicator is specified in
positions 56 and 57, it is set on when an error occurs during running of the opera-
tion. If an indicator is specified in positions 58 and 59, it is set on when a record is
present whose key or relative record number is equal to the search argument.

If factor 2 contains a file name for which the lower limit is to be set, the file is
positioned at the first record with a key or relative record number equal to or
greater than the search argument specified in factor 1.

If factor 2 contains a record format name for which the lower limit is to be set, the
file is positioned at the first record of the specified type that has a key equal to or
greater than the search argument specified in factor 1.

Figurative constants can be used to position the file. When used with a file with a
composite key, figurative constants are treated as though each field of the key con-
tained the figurative constant value. In most cases, *LOVAL positions the file so that
the first read retrieves the record with the lowest key. In most cases, *HIVAL posi-
tions the file so that a READP retrieves the last record in the file, or a READ receives
an end-of-file indication. However, note the following cases for using *LOVAL and
*HIVAL with numeric keys:

e With an externally described file that has a key in descending order, *HIVAL
positions the file so that the first read operation retrieves the first record in the
file (the record with the highest key), and *LOVAL positions the file so that a
READP operation retrieves the last record in the file (the record with the lowest
key).

e If arecord is added or a key field altered after a SETLL operation with either
*LOVAL or *HIVAL, the file may no longer be positioned to the record with the
lowest or highest key.

e *LOVAL represents a key value X'99...9D’ and *HIVAL represents a key value
X'99...9F'. When a program described file has a packed decimal key specified

SETLL

in the file specifications but the actual file key field contains character data,
records may have keys that are less than *LOVAL or greater than *HIVAL. When
a key field contains unsigned binary data, *LOVAL may not be the lowest key.

Figure 83 on page 345 (part 2 of 2) shows the use of figurative constants with the
SETGT operation. Figurative constants are used the same way with the SETLL oper-
ation.

Remember the following when using the SETLL operation:

e |f the SETLL operation is not successful (no records found condition), the file is
positioned to the end of the file.

e When end of file is reached on a file being processed by SETLL, another SETLL
can be issued to reposition the file.

e After a SETLL operation successfully positions the file at a record, you retrieve
this record by reading the file. Before you read the file, however, records may
be deleted from the file by another job or through another file in your job.
Thus, you may not get the record you expected. Even if the resulting indicator
in positions 58 and 59 is set on to indicate you found a matching record, you
may not get that record. For information on preventing unexpected modification
of your files, see the discussion of allocating objects in the CL Reference.

e SETLL does not cause the system to access a data record. If you are only
interested in verifying that a key actually exists, SETLL with an equal indicator
(positions 58-59) is a better performing solution than the CHAIN operation in
most cases. Under special cases of a multiple format logical file with sparse
keys, CHAIN can be a faster solution than SETLL.

In this example, the file ORDFIL contains order records. The key field is the order

number (ORDER) field. There are multiple records for each order. ORDFIL looks like
this in the calculation specifications:

Chapter 11. Operation Codes 349

SETLL

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

Cx*
Cx*
Cx*
C*
C*
C*
C

C

C

Cx*
C*
C=*
C

Cx*
Cx*
C

C

C*
Cx*
Cx*
Cx*
Cx*
C*
C

A11 the 101 records in ORDFIL are to be printed. The value 101
has previously been placed in ORDER. The SETLL operation
positions the file at the first 101 record. Because there are
101 records, indicator 55 is set on and the GOTO operation is
not processed.

ORDER SETLLORDFIL 55 101 PRESNT
N55 GOTO NOTFND
LOOP TAG

The READE operation reads the first 101 record. Because
indicator 56 is not on, the lines conditioned by N56 are
processed.

ORDER READEORDFIL 56 END OF GRP
The EXCPT operation is processed, and the program branches to the
label specified in the GOTO operation.

N56 EXCPTDETAIL PRINT A LINE
N56 GOTO LOOP

The READE operation reads the second, third, and fourth 101
records in the same manner as the first 101 record was read.
After the fourth 101 record is read, the READE operation is
attempted. Because the 102 record is not of the same group,
indicator 56 is set on and the two following operations are

bypassed.
NOTFND TAG
ORDFIL
ORDER Other Fields
100 1st record of 100
100 2nd record of 100
100 3rd record of 100
(SETLL)—>»
101 1st record of 101
101 2nd record of 101
101 3rd record of 101
101 4th record of 101
102 1st record of 102

Figure 84. SETLL Operation

350

RPG/400 Reference

SETOF (Set Off)

SETOF

Code

Factor 1

Factor 2

Result Field Indicators

SETOF

OF OF OF

The SETOF operation sets off any indicators specified in positions 54 through 59.
You must specify at least one resulting indicator in positions 54 through 59. Entries
of 1P and MR are not valid. Setting off L1 through L9 indicators does not automat-

ically set off any lower control-level indicators.

Figure 85 on page 352 illustrates the SETOF operation.

Chapter 11. Operation Codes 351

SETON

SETON (Set On)

Code Factor 1 Factor 2 Result Field Indicators

SETON ON ON ON

The SETON operation sets on any indicators specified in positions 54 through 59.
You must specify at least one resulting indicator in positions 54 through 59. Entries
of 1P, MR, KA through KN, and KP through KY are not valid. Setting on L1 through
L9 indicators does not automatically set on any lower control-level indicators.

LS I AR ORI DUPIPITE. RO SO (TN DU AP ¢ AP PPNy AN
CLONOINOZ2NO3Factorl+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
C*

C+ The SETON and SETOF operations set from one to three indicators

Cx specified in positions 54 through 59 on and off.

Cx The SETON operation sets indicator 17 on.

c SETON 17
Cx The SETON operation sets indicators 17 and 18 on.
c SETON 1718
C+ The SETOF operation sets indicator 21 off.

C SETOF 21

Figure 85. SETON and SETOF Operations

352 RPG/400 Reference

SHTDN (Shut Down)

SHTDN

Code

Factor 1

Factor 2

Result Field Indicators

SHTDN

ON

*

g,

The SHTDN operation allows the programmer to determine whether the system oper-
ator has requested shutdown. If the system operator has requested shutdown, the
resulting indicator specified in positions 54 and 55 is set on. Positions 54 and 55
must contain one of the following indicators: 01 through 99, L1 through L9, Ul
through U8, H1 through H9, LR, or RT.

The system operator can request shutdown by specifying the *CNTRLD option on the
following CL commands: ENDJOB (End Job), PWRDWNSYS (Power Down System),
ENDSYS (End System), and ENDSBS (End Subsystem). For information on these
commands, see the CL Reference.

Positions 56 through 59 must be blank.

e

Lt

bl

CLONOINO2NO3Factorl+++OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

Cx*
Cx*
Cx*
C*
C
C

When the SHTDN operation is run, a test is made to determine
whether the system operator has requested shutdown. If so,
indicator 27 is set on and the GOTO END operation is processed.

27

SHTDN
GOTO END

Figure 86. SHTDN Operation

Chapter 11. Operation Codes 353

SORTA

SORTA (Sort an Array)

Code Factor 1 Factor 2 Result Field Indicators
SORTA Array name

*..o.1....

E

Factor 2 contains the name of an array to be sorted. The array is sorted into
sequence (ascending or descending), depending on the sequence specified for the
array in position 45 of the extension specifications. If no sequence is specified, the
array is sorted into ascending sequence. The array *IN cannot be specified in
factor 2 of a SORTA operation. A related array, such as a second array defined on
the same extension specification, is not sorted. Only the array specified in factor 2

is sorted.

P

.. R T
E....FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments
ARRY

8§ 1 A

NI S

...

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
Cx The SORTA operation sorts ARRY into ascending sequence because A

Cx s specified in position 45 of the extension specifications.

Cx If the nonsorted ARRY contents were GT1BA2LO, the sorted ARRY

C* contents would be ABGLTO12.

Cx*
C

SORTAARRY

Figure 87. SORTA Operation

354 RPG/400 Reference

SQRT

SQRT (Square Root)

Code

Factor 1 Factor 2 Result Field Indicators

SQRT (%)

Value Root

The SQRT operation derives the square root of the field named in factor 2. The
square root of factor 2 is placed in the result field.

Factor 2 must be numeric, and can contain one of: an array, array element, field,
figurative constant, literal, named constant, subfield, or table name.

The result field must be numeric, and can contain one of: an array, array element,
subfield, or table element.

An entire array can be used in a SQRT operation if factor 2 and the result field
contain array names.

The number of decimal positions in the result field can be either less than or
greater than the number of decimal positions in factor 2. However, the result field
should not have fewer than half the number of decimal positions in factor 2.

If the value of the factor 2 field is zero, the result field value is also zero. If the
value of the factor 2 field is negative, the RPG/400 exception/error handling routine
receives control.

For further rules on the SQRT operation, see “Arithmetic Operations” on page 189.

See Figure 33 on page 191 for an example of the SQRT operation.

Chapter 11. Operation Codes 355

SuUB

SUB (Subtract)

Code

Factor 1

Factor 2

Result Field

Indicators

SUB(%)

Minuend

Subtrahend

Difference

+-Z

If factor 1 is specified, factor 2 is subtracted from factor 1 and the difference is
placed in the result field. If factor 1 is not specified, the contents of factor 2 are

subtracted from the contents of the result field.

Factor 1 and factor 2 must be numeric, and each can contain one of: an array,
array element, field, figurative constant, literal, named constant, subfield, or table

name.

The result field must be numeric, and can contain one of: an array, array element,

subfield, or table name.

For rules for the SUB operation, see “Arithmetic Operations” on page 189.

See Figure 33 on page 191 for examples of the SUB operation.

356 RPG/400 Reference

SUBST

SUBST (Substring)

Code Factor 1 Factor 2 Result Field Indicators
SUBST (p) Length to extract Base string:start Target string _ER _

The SUBST operation returns a substring from factor 2, starting at the location speci-
fied in factor 2 for the length specified in factor 1, and places this substring in the
result field. If factor 1 is not specified, the length of the string from the start posi-
tion is used.

Factor 1 can contain the length value of the string to be extracted from the string
specified in factor 2. It must be numeric with no decimal positions and can contain
one of: a field name, array element, table name, literal, or named constant.

Factor 2 must contain either the base character string, or the base character string
followed by ':', followed by the start location. The base string portion must be
character, and can contain one of: a field name, array element, named constant,
data structure name, table name, or literal. The start position must be numeric with
zero decimal positions, and can contain one of the following: a field name, array
element, table name, literal or named constant. If it is not specified, SUBST starts in
position 1 of the base string.

The start location and the length of the substring to be extracted must be positive
integers. The start location must not be greater than the length of the base string,
and the length must not be greater than the length of the base string from the start
location. If either or both of these conditions is not satisfied, the operation will not
be performed, and if you specified an error indicator in positions 56 and 57 it will be
set on. If you did not specify an error indicator, the exception/error handling routine
receives control.

The result field must be character, and can contain one of the following: a field
name, array element, data structure, or table name. The substring is left-justified,
and its length should be at least as large as the length specified in factor 1. If the
substring is longer than the field specified in the result field, the substring will be
truncated from the right.

Note: You cannot use figurative constants in the factor 1, factor 2, or result fields.
No overlapping is allowed for factor 1 and the result field or factor 2 and the result
field.

If factor 1 is shorter than the length of the result field, a P specified in the operation

extender position (position 53) indicates that the result field should be padded on
the right with blanks after the substring occurs.

Chapter 11. Operation Codes 357

SUBST

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

Cx*
Cx*
Cx*
C*
C*
C

C

C

Cx*
Cx*
C*
C=*
Cx*
C

C

C

C*
C*
Cx*
Cx*
Cx*

C

C
C
Cx*
Cx*
Cx*
C*

The SUBST operation extracts the substring from factor 2 starting
at position 3 for a length of 2. The value 'CD' is placed in the
result field RESULT. Indicator 90 is not set on because no error
occurred.

Z-ADD3 T 20
MOVEL'ABCDEF' STRING 10
2 SUBSTSTRING:T RESULT 90

In this SUBST operation, the Tength is greater than the length
of the string minus the start position plus 1. As a result,
indicator 90 is set on and the result field is not changed.

MOVE 'ABCDEF' STRING 6
Z-ADD4 T 10
5 SUBSTSTRING:T RESULT 920

In this SUBST operation, 3 characters are substringed starting
at the fifth position of the base string. Because P is not
specified in position 53, only the first 3 characters of RESULT
are changed. RESULT contains '123XXXXX'.

Z-ADD3 LENGTH 20

Z-ADD5 T 20

MOVE 'TEST123' STRING 8

MOVE *ALL'X' RESULT

LENGTH SUBSTSTRING:T RESULT 8 90

This example is the same as the previous one except P is
specified in position 53, and the result is padded with blanks.
RESULT equals '123bbbbb’.

Figure 88 (Part 1 of 2). SUBST Operation

358

RPG/400 Reference

SUBST

C Z-ADD3 LENGTH 20

C Z-ADD5 T 20

C MOVE 'TEST123' STRING 8

C MOVE *ALL'X' RESULT

C LENGTH SUBSTSTRING:T RESULT 8 P 90
C*

Cx In the following example, CITY contains the string

Cx 'Toronto, Ontario'. The SCAN operation is used to lTocate the
Cx separating blank, position 9 in this illustration. SUBST

Cx without factor 1 places the string starting at position 10 and
Cx continuing for the length of the string in field TCNTRE.

C+x TCNTRE contains 'Ontario'.

c ! SCAN CITY c

c ADD 1 c

C SUBSTCITY:C TCNTRE
C=*

C* Before the operations STRING='bbbJohnbbbbbb'.

C* RESULT is a 10 character field which contains 'ABCDEFGHIJ'.

C* The CHECK operation locates the first nonblank character

C* and sets on indicator 10 if such a character exists. If *IN10
Cx is on, the SUBST operation substrings STRING starting from the
Cx 'J'" to the end of STRING. Padding is used to ensure that

C* nothing is left from the previous contents of the result

C*x field.

C* After the operations RESULT='Johnbbbbbb'.

C*
C 't CHECKSTRING ST 10
C 10 SUBSTSTRING:ST RESULT P

Figure 88 (Part 2 of 2). SUBST Operation

Chapter 11. Operation Codes

359

TAG

TAG (Tag)

Code

Factor 1 Factor 2 Result Field Indicators

TAG

Label

360

RPG/400 Reference

The declarative TAG operation names the label that identifies the destination of a
“GOTO (Go To)” or “CABxx (Compare and Branch)” operation.

It can be specified anywhere within calculations, including within total calculations.
The control level entry (positions 7 and 8) can be blank or can contain an L1
through L9 indicator, the LR indicator, or the L0 entry to group the statement within
the appropriate section of the program. Conditioning indicator entries (positions 9
through 17) are not allowed.

Factor 1 must contain the name of the destination of a GOTO or CABxx operation.
This name must be a unique symbolic name, which is specified in factor 2 of a
GOTO operation or in the result field of a CABxx operation. The name can be used as
a common point for multiple GOTO or CABxx operations.

Branching to the TAG from a different part of the RPG/400 logic cycle may result in
an endless loop. For example, if a detail calculation line specifies a GOTO operation
to a total calculation TAG operation, an endless loop may occur.

See Figure 62 on page 272 for examples of the TAG operation.

TESTB

TESTB (Test Bit)

Code

Factor 1 Factor 2 Result Field Indicators

TESTB

Bit numbers Character field OF ON EQ

The TESTB operation compares the bits identified in factor 2 with the corresponding
bits in the field named as the result field. The result field must be a one-position
character field. Resulting indicators in positions 54 through 59 reflect the status of
the result field bits. Factor 2 is always a source of bits for the result field.

Factor 2 can contain:

e Bit numbers 0-7: From 1 to 8 bits can be tested per operation. The bits to be
tested are identified by the numbers 0 through 7. (0 is the leftmost bit.) The bit
numbers must be enclosed in apostrophes, and the entry must begin in position
33. For example, to test bits 0, 2, and 5, enter 025’ in factor 2.

* Field name: You can specify the name of a one-position character field, table
name, or array element in factor 2. The bits that are on in the field, table
name, or array element are compared with the corresponding bits in the result
field; bits that are off are not affected. The field specified in factor 2 or in the
result field can be an array element if each element of the array is a one-
position character field.

e Hexadecimal literal or named constant: You can specify a 1-byte hexadecimal
literal or hexadecimal named constant. Bits that are on in factor 2 are com-
pared with the corresponding bits in the result field; bits that are off are not
considered.

Figure 89 on page 362 illustrates uses of the TESTB operation.

Indicators assigned in positions 54 through 59 reflect the status of the result field
bits. At least one indicator must be assigned, and as many as three can be
assigned for one operation. For TESTB operations, the resulting indicators are set
on as follows:

* Positions 54 and 55: An indicator in these positions is set on if the bit numbers
specified in factor 2 or each bit that is on in the factor 2 field is off in the result
field. That is, all of the specified bits are equal to off.

» Positions 56 and 57: An indicator in these positions is set on if the bit numbers
specified in factor 2 or the bits that are on in the factor 2 field are of mixed
status (some on, some off) in the result field. That is, some of the specified
bits are equal to on.

Note: If only one bit is to be tested, these positions must be blank. If a field
name is specified in factor 2 and it has only one bit on, an indicator in positions
56 and 57 is not set on.

e Positions 58 and 59: An indicator in these positions is set on if the bit numbers
specified in the factor 2 or each bit that is on in factor 2 field is on in the result
field. That is, all of the specified bits are equal to on.

Note: If the field in factor 2 has no bits on, then no indicators are set on.

Chapter 11. Operation Codes 361

TESTB

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

Cx*
Cx*
Cx*
C*
C*
C

Cx*
Cx*
Cx*
C

C*
C=*
Cx*
C

Cx*
Cx*
C*
C

Cx*
Cx*
Cx*
C

C*
C*
Cx*
C*
C

The field bit settings are FLDF = 00000001, and FLDG = 11110001.

Indicator 16 is set on because bit 3 is off (0) in FLDF.
Indicator 17 is set off.
TESTB'3' FLDF l6 17

Indicator 16 is set on because both bits 3 and 6 are off (0) in
FLDF. Indicators 17 and 18 are set off.
TESTB'36' FLDF 161718

Indicator 17 is set on because bit 3 is off (0) and bit 7 is on
(1) in FLDF. Indicators 16 and 18 are set off.
TESTB'37' FLDF 161718

Indicator 17 is set on because bit 7 is on (1) in FLDF.
Indicator 16 is set off.
TESTB'7' FLDF l6 17

Indicator 17 is set on because bits 0,1,2, and 3 are off (0) and
bit 7 is on (1). Indicators 16 and 18 are set off.
TESTBFLDG FLDF 161718

The hexadecimal literal X'88' (10001000) is used in factor 2.
Indicator 17 is set on because bit 0 is on and bit 4 is off.
Indicators 16 and 18 are set off.

TESTBX'88' FLDG 161718

Figure 89. TESTB Operation

362

RPG/400 Reference

TESTN

TESTN (Test Numeric)

Code

Factor 1 Factor 2 Result Field Indicators

TESTN

Character field NU BN BL

The TESTN operation tests a character result field for the presence of zoned decimal
digits and blanks. The result field must be a character field. To be considered
numeric, each character in the field, except the low-order character, must contain a
hexadecimal F zone and a digit (O through 9). The low-order character is numeric
if it contains a hexadecimal C, hexadecimal D, or hexadecimal F zone, and a digit
(0 through 9). Note that the alphabetic characters J through R, should they appear
in the low-order position of a field, are treated as negative numbers by TESTN. As a
result of the test, resulting indicators are set on as follows:

e Positions 54 and 55: Either the result field contains numeric characters, or it
contains a 1-character field that consists of a letter from A to R.

e Positions 56 and 57: The result field contains both numeric characters and at
least one leading blank. For example, the values 123 or bH123 set this indi-
cator on. However, the value 123 is not a valid numeric field because of the
embedded blanks, so this value does not set this indicator on.

Note: An indicator cannot be specified in positions 56 and 57 when a field of
length one is tested because the character field must contain at least one
numeric character and one leading blank.

e Positions 58 and 59: The result field contains all blanks.

The same indicator can be used for more than one condition. If any of the condi-
tions exist, the indicator is set on.

To prevent undesirable results or an abnormal end of a program, the TESTN opera-
tion validates data in fields before arithmetic or editing operations are processed on
the fields. Following validation, the field must be moved to a numeric field to
process the arithmetic and editing operations.

Chapter 11. Operation Codes 363

TESTN

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

Cx*
Cx*
Cx*
C*
C*
C*
C

Cx*
Cx*
C

C*
C=*
C

Cx*
Cx*
C

C*
C*
C

Cx*
Cx*
C

C*
C*
C

The field values are FLDA = 123, FLDB = 1X4, FLDC = 004,
FLDD = bbb, FLDE = b1b3, and FLDF = bl2.

Indicator 21 is set on because FLDA contains all numeric
characters.

TESTN FLDA 21
Indicator 22 is set on because FLDA contains all numeric
characters. Indicators 23 and 24 remain off.

TESTN FLDA 222324
A1l indicators are off because FLDB does not contain valid
numeric data.

TESTN FLDB 252627
Indicator 28 is set on because FLDC contains valid numeric data.
Indicators 29 and 30 remain off.

TESTN FLDC 282930
Indicator 33 is set on because FLDD contains all blanks.
Indicators 31 and 32 remain off.

TESTN FLDD 313233
Indicators 34, 35, and 36 remain off. Indicator 35 remains off
off because FLDE contains a blank after a digit.

TESTN FLDE 343536
Indicator 38 is set on because FLDF contains leading blanks and
low order digits. Indicators 37 and 39 remain off.

TESTN FLDF 373839

Figure 90. TESTN Operation

364

RPG/400 Reference

TESTZ (Test Zone)

TESTZ

Code

Factor 1

Factor 2

Result Field

Indicators

TESTZ

Character field

The TESTZ operation tests the zone of the leftmost character in the result field. The
result field must be a character field. Resulting indicators are set on according to
the results of the test. You must specify at least one resulting indicator positions

54 through 59. The characters &, A through I, and any character with the same

zone as the character A set on the indicator in positions 54 and 55. The characters
- (minus), J through R, and any character with the same zone as the character J
set on the indicator in positions 56 and 57. Characters with any other zone set on
the indicator in positions 58 and 59.

Chapter 11. Operation Codes

365

TIME

TIME (Time of Day)

Code

Factor 1 Factor 2 Result Field Indicators

TIME

Numeric field

366 RPG/400 Reference

The TIME operation accesses the system time of day and, if specified, the system
date at any time during program processing. The system time is based on the
24-hour clock.

The result field must specify the name of a 6-, 12- or 14-digit numeric field (no
decimal positions) into which the time of day or the time of day and the system
date are written.

To access the time of day only, specify the result field as a 6-digit numeric field. To
access both the time of day and the system date, specify the result field as a 12-
(2-digit year portion) or 14-digit (4-digit year portion) numeric field. The time of day
is always placed in the first six positions of the result field in the following format:

hhmmss (hh=hours, mm=minutes, and ss=seconds)

If the system date is included, it is placed in positions 7 through 12 or 7 through 14
of the result field. The date format depends on the date format job attribute
QDATFMT and can be mmddyy, ddmmyy, yymmdd, or Julian. The Julian format for
2-digit year portion contains the year in positions 7 and 8, the day (1 through 366,
right-adjusted, with zeros in the unused high-order positions) in positions 9 through
11, and O in position 12. For 4-digit year portion, it contains the year in positions 7
through 10, the day (1 through 366, right-adjusted, with zeros in the unused high-
order positions) in positions 11 through 13, and 0 in position 14.

The special fields UDATE and *DATE contain the job date. These values are not
updated when midnight is passed, or when the job date is changed during the
running of the program.

TIME

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
Cx*

C+ When the TIME operation is processed (with a 6-digit numeric

C+ field), the current time (in the form hhmmss) is placed in the
C+ result field CLOCK. The TIME operation is based on the 24-hour
Cx clock, for example, 132710. (In the 12-hour time system, 132710
C+ s 1:27:10 p.m.) CLOCK can then be specified in the output

C+ specifications.

(" TIME CLOCK 60 TIME OF DAY

C+ When the TIME operation is processed (with a 12-digit numeric

C+ field), the current time and day is placed in the result field
Cx TIMSTP. The first 6 digits are the time, and the last 6 digits
Cx are the date; for example, 093315121579 is 9:33:15 a.m. on

Cx December 15, 1979. TIMSTP can then be specified in the output
C+ specifications.

C TIME TIMSTP 120 TIME STAMP
C MOVELTIMSTP TIME 60
c MOVE TIMSTP SYSDAT 60

Cx This example duplicates the 12-digit example above but uses a
Cx 14-digit field. The first 6 digits are the time, and the last
Cx 8 digits are the date; for example, 13120001101992

Cx s 1:12:00 p.m. on January 10, 1992.

Cx TIMSTP can then be specified in the output specifications.

c TIME TIMSTP 140 TIME STAMP
c MOVELTIMSTP TIME 60
C MOVE TIMSTP SYSDAT 80

Figure 91. TIME Operation

Chapter 11. Operation Codes 367

UNLCK

UNLCK (Unlock a Data Area or Release a Record)

Code Factor 1 Factor 2 Result Field Indicators

UNLCK Data area or file name ER _

The UNLCK operation is used to unlock data areas and release record locks in a
program. The data area must already be specified in the result field of an *NAMVAR
DEFN statement. If the UNLCK operation is specified to an already unlocked data
area, an error does not occur.

In addition, the UNLCK operation allows the most recently locked record to be
unlocked for an update disk file.

Factor 2 must contain the name of the data area to be unlocked, the name of an
update disk file, or the reserved word *NAMVAR. When *NAMVAR is specified in factor
2, all data areas in the program that are locked are unlocked. Factor 2 must not
refer to the local data area or the Program Initialization Parameters (PIP) data area.

The file specified in factor 2 must be an UPDATE disk file.

You can specify a resulting indicator in positions 56 and 57 to be set on if an error
occurs on the operation. Positions 54, 55, 58, and 59 must be blank.

LR IR, U7/ DU PP U S TP DUPPUPE, UMV ¢ DRPEPRP: U
FFiTenameIPEAF....R1enLK1IAIOvKTocEDevice+...... KExit++Entry+A....U
F+

FUPDATA UF E DISK

F=

Cx Assume that the file UPDATA contains record format VENDOR.

C+ A record is read from UPDATA. Since the file is an update

Cx file, the record is locked. If *IN50 is on, the record is

C+ wupdated; otherwise the record is unlocked using the UNLCK

Cx operation. Note that factor 2 of the UNLCK operation is the

Cx file name, UPDATA, not the record name, VENDOR.

Cx*
CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
C*

C READ VENDOR 12

C* *IN50 IFEQ *ON

C* UPDATVENDOR Update record
C ELSE

C UNLCKUPDATA 99 Release record
C ENDIF

Cx*

Figure 92. UNLCK Operation

368

RPG/400 Reference

UPDAT

UPDAT (Modify Existing Record)

Code

Factor 1 Factor 2 Result Field Indicators

UPDAT

File name Data structure ER

The UPDAT operation modifies the last record retrieved for processing from an
update disk file or subfile. No other operation should be performed on the file
between the input operation that retrieved the record and the UPDAT operation.

Factor 2 must contain the name of a file or record format to be updated. A record
format name in factor 2 is required with an externally described file. The record
format name must be the name of the last record read from the file; otherwise, an
error occurs. A file name in factor 2 is required with a program described file.

The result field must contain a data structure name if factor 2 contains a file name.
The updated record is written directly from the data structure to the file. The result
field must be blank if factor 2 contains a record format name.

You can specify a resulting indicator in positions 56 and 57 to be set on if the UPDAT
operation is not completed successfully.

Remember the following when using the UPDAT operation:

e When a record format name is specified in factor 2, the current values in the
program for the fields in the record definition are used to modify the record.

e |f some but not all fields in a record are to be updated, use the output specifi-
cations and not the UPDAT operation.

» Before UPDAT is issued to a file or record, a valid input operation with lock
(READ, READC, READE, READP, REDPE, CHAIN, or primary/secondary file) must be
issued to the same file or record. If the read operation returns with an error
condition or if it was read without locking, the record is not locked and UPDAT
cannot be issued. The record must be read again with the default of blank in
position 53 to specify a lock request.

e Consecutive UPDAT operations to the same file or record are not valid. Inter-
vening successful read operations must be issued.

e Beware of using the UPDAT operation on primary or secondary files during total
calculations. At this stage in the RPG/400 cycle, the fields from the current
record (the record that is about to be processed) have not yet been moved to
the processing area. Therefore, the UPDAT operation updates the current record
with the fields from the preceding record. Also, when the fields from the
current record are moved to the processing area, they are the fields that were
updated from the preceding record.

e For multiple device files, specify a subfile record format in factor 2. The opera-
tion is processed for the program device identified in the field specified in the
ID entry of the file specifications continuation line. (If there is no such entry,
the device for the last successful input operation is used.) This device must be
the same one you specified for the input operation that must precede the UPDAT
operation. You must not process input or output operations to other devices in
between the input and UPDAT operations. If you do, your UPDAT operation will
fail.

e For a display file which has multiple subfile record formats, you must not
process read-for-update operations to one subfile record in between the input

Chapter 11. Operation Codes 369

UPDAT

and UPDAT operations to another subfile in the same display file. If you do, the
UPDAT operation will fail.

370 RPG/400 Reference

WHxX

WHxx (When True Then Select)

Code Factor 1 Factor 2 Result Field Indicators
WHxx Comparand Comparand

The WHxx operations of a select group determine where control passes after the
“SELEC (Begin a Select Group)” operation is processed.

The WHxx conditional operation is true if factor 1 and factor 2 have the relationship
specified by xx If the condition is true, the operations following the WHxx are proc-
essed until the next WHxx, OTHER, ENDSL, or END operation.

When performing the WHxx operation remember:

After the operation group is processed, control passes to the statement fol-
lowing the ENDSL operation.

You can code complex WHxx conditions using ANDxx and ORxx. Calculations
are processed when the condition specified by the combined WHxx, ANDxx, and
ORxx operations is true.

The WHxx group can be empty.

Within total calculations, the control level entry (positions 7 and 8) can be blank
or can contain an L1 through L9 indicator, an LR indicator, or an L0 entry to
group the statement within the appropriate section of the program. The control
level entry is for documentation purposes only. Conditioning indicator entries
(positions 9 through 17) are not allowed.

Refer to “Compare Operations” on page 193 for valid values for xx.

Chapter 11. Operation Codes 371

WHXxX

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++

Cx*
Cx*
Cx*
C*
C*
C*
C

C

C

C

C

C=*
Cx*
Cx*
Cx*
Cx*
C*
C*
C

Cx*
Cx*

o

OOOOOOOOO

Cx*
Cx*
C
C
C

The following example shows nested SELEC groups. The employee
type can be one of 'C' for casual, 'T' for retired, 'R' for
regular, and 'S' for student. Depending on the employee type
(EMPTYP), the number of days off per year (DAYS) will vary.

SELEC
EMPTYP WHEQ 'C'
EMPTYP OREQ 'T'

Z-ADDO DAYS
EMPTYP WHEQ 'R’

When the employee type is 'R', the days off depend also on the
number of years of employment. The base number of days is 14.
For less than 2 years, no extra days are added. Between 2 and

5 years, 5 extra days are added. Between 6 and 10 years, 10
extra days are added, and over 10 years, 20 extra days are added.

Z-ADD14 DAYS

Nested select group.
SELEC
YEARS WHLT 2
YEARS WHLE 5

ADD 5 DAYS
YEARS WHLE 10

ADD 10 DAYS

OTHER

ADD 20 DAYS

ENDSL

End of nested select group.

EMPTYP WHEQ 'S’
Z-ADD5 DAYS
ENDSL

Figure 93 (Part 1 of 2). WHxx Operation

372

RPG/400 Reference

WHxX

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
C+ Example of a SELEC group with complex WHxx expressions. Assume
C+ that a record and an action code have been entered by a user.

Cx Select one of the following:

Cx * When F3 has been pressed, do subroutine QUIT.

Cx * When action code A (add) was entered and the record does not

C* exist (*IN50=1), write the record.

Cx * When action code A is entered, the record exists, and the
Cx active record code for the record is D (deleted); update
C* the record with active rec code=A. When action code D is
C* entered, the record exists, and the ACREC code is A; mark
C* the record as deleted.

Cx = When action code is C (change), the record exists, and the
C* ACREC code is A; update the record.
Cx * Otherwise, do error processing.

Cx*

(]

RSCDE

*INKC

ACODE
*IN50

ACODE
*IN50
ACREC
ACODE
*IN50
ACREC

ACODE
*IN50
ACREC

OOOOOOOOOOOOOOOOOOOOOOO

CHAINFILE
SELEC

WHEQ *ON
EXSR QUIT
WHEQ 'A"
ANDEQxON
WRITEREC
WHEQ 'A"
ANDEQ*OFF
ANDEQ'D"
OREQ 'D’
ANDEQ*OFF
ANDEQ'A"
MOVE ACODE
UPDATREC
WHEQ 'C"
ANDEQ*OFF
ANDEQ'A"
UPDATREC
OTHER

EXSR ERROR
ENDSL

Figure 93 (Part 2 of 2). WHxx Operation

ACREC

50

Chapter 11. Operation Codes

373

WRITE

WRITE (Create New Records)

Code Factor 1 Factor 2 Result Field Indicators

WRITE File name Data structure ER _

The WRITE operation writes a new record to a file.

Factor 2 must contain the name of a file. A record format name is required in
factor 2 with an externally described file. A file name in factor 2 is required with a
program described file, and the result field must contain the name of a data struc-
ture. The record is written directly from the data structure to the file. The result
field must be blank if factor 2 contains a record format name.

The result field must be a data structure name.

Positions 56 and 57 can contain an indicator to be set on if the WRITE operation is
not completed successfully. The indicator in positions 56 and 57 will be set on if
overflow is reached to an externally described print file and no overflow indicator
has been specified on the File description specification. On a WRITE to a subfile
(SFILE) record name, you can specify an indicator in positions 58 and 59; it is set
on when the subfile is filled.

When using the WRITE operation remember:

e When factor 2 contains a record format name, the current values in the
program for all the fields in the record definition are used to construct the
record.

e When records that use relative record numbers are written to a file, you must
update the RECNO (relative record number) field so it contains the relative record
number of the record to be written.

e When you use the WRITE operation to add records to a DISK file, you must
specify an A in position 66 of the file description specifications. (See “Position
66 (File Addition)” on page 100.)

¢ Device dependent functions are not available. For example, if a WRITE is issued
to a PRINTER device, there is no spacing or skipping (normally specified in
columns 17 through 22 of the output specifications). If the file is externally
described, these functions are part of the external description.

e For a multiple device file, data is written to the program device named in the
field specified in the ID entry on the file specifications continuation line. If there
is no such entry, data is written to the program device for which the last suc-
cessful input operation was processed.

L I R . D R | S TN PUME. U ¢ DRPR Y A
CLONOINO2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
Cx*

Cx The WRITE operation writes the fields in the data structure

C+ DS1 to the file, FILEL.

Cx*

C WRITEFILE1 DS1 ADD RECORD

Figure 94. WRITE Operation

374 RPG/400 Reference

XFOOT

XFOOT (Summing the Elements of an Array)

Code Factor 1 Factor 2 Result Field Indicators
XFOOT (%) Array name Sum +-Z

XFOOT adds the elements of an array together and places the sum into the field
specified as the result field. Factor 2 contains the name of the array.

If half-adjust (position 53) is specified, the rounding occurs after all elements are
summed and before the results are moved into the result field. If the result field is

an element of the array specified in factor 2, the value of the element before the
XFOOT operation is used to calculate the total of the array.

For further rules for the XFOOT operation, see “Arithmetic Operations” on page 189.

See Figure 33 on page 191 for an example of the XFOOT operation.

Chapter 11. Operation Codes 375

XLATE

XLATE (Translate)

Code Factor 1 Factor 2 Result Field Indicators
XLATE (p) From:To String:start Target String _ER _

376

RPG/400 Reference

Characters in the source string (factor 2) are translated according to the From and
To strings (both in factor 1) and put into a receiver field (result field). Source char-
acters with a match in the From string are translated to corresponding characters in
the To string. XLATE starts translating the source at the location specified in factor
2 and continues character by character, from left to right. If a character of the
source string exists in the From string, the corresponding character in the To string
is placed in the result field. Any characters in the source field before the starting
position are placed unchanged in the result field.

Factor 1 must contain the From string, followed by a colon, followed by the To
string. The From and To strings can contain one of the following: a field name,
array element, named constant, data structure name, literal, or table name.

Factor 2 must contain either the source string or the source string followed by a
colon and the start location. The source string portion of factor 2 must be char-
acter, and can contain one of the following: a field name, array element, named
constant, data structure name, data structure subfield, literal, or table name. The
start location portion of factor 2 must be numeric with no decimal positions and can
be a named constant, array element, field name, literal, or table name. If no start
location is specified, a value of 1 is used.

The result field can be a character field, character array element, data structure or
a character table. The length of the result field should be as large as the source
string specified in factor 2. If the result field is larger than the source string, the
result will be left adjusted. If the result field is shorter than the source string, the
result field will contain the leftmost part of the translated source.

If a character in the From string is duplicated, the first occurrence (leftmost) is
used.

Note: Figurative constants cannot be used in factor 1, factor 2, or result fields. No
overlapping in a data structure is allowed for factor 1 and the result field, or factor 2
and the result field.

Any valid indicator can be specified in columns 7 to 17.
If factor 2 is shorter than the result field, a P specified in the operation extender
position (position 53) indicates that the result field should be padded on the right

with blanks after the translation.

Columns 54 and 55 must be blank. An indicator in positions 56-57 turns on if an
error occurs on the operation. Columns 58-59 must be blank.

Both factor 2 and the result field must be character or both must be DBCS.

XLATE

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
C=*

Cx The following translates the blank in NUMBER to '-'. The result
C* in RESULT will be '999-9999"'.

C*

C MOVE '999 9999'NUMBER 8

C ' ':'-' XLATENUMBER RESULT 8

Figure 95. XLATE Operation

I+ In the following example, all values in STRING are translated to
I* uppercase. As a result, RESULT='RPG DEP'.

I*

I '"ABCDEFGHIJKLMNOPQRS- C up

I "TUVWXYZ'

I 'abcdefghi jklmnopqrs- C LO

I 'tuvwxyz'

Cx*
CLONOINO2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
c MOVE 'RpG Dep' STRING 7

C LO:UP XLATESTRING RESULT 90

Cx*

Cx In the following example all values in the string are translated
C+ to Towercase. As a result, RESULT='rpg dep'.

Cx*
C MOVE 'RpG Dep' STRING 7
c UP:LO XLATESTRING RESULT 90

Figure 96. XLATE Operation With Named Constants

Chapter 11. Operation Codes 377

Z-ADD

Z-ADD (Zero and Add)

Code

Factor 1 Factor 2 Result Field Indicators

Z-ADD (%)

Addend Sum +-Z

378

Factor 2 is added to a field of zeros. The sum is placed in the result field. Factor
1is not used. Factor 2 must be numeric and can contain one of: an array, array
element, field, figurative constant, literal, named constant, subfield, or table name.

The result field must be numeric, and can contain one of: an array, array element,
subfield, or table name.

Half-adjust (position 53) can be specified.
For the rules for the Z-ADD operation, see “Arithmetic Operations” on page 189.

See Figure 33 on page 191 for an example of the Z-ADD operation.

RPG/400 Reference

Z-SUB (Zero and Subtract)

Z-SUB

Code

Factor 1

Factor 2

Result Field

Indicators

Z-SUB (%)

Subtrahend

Difference

+-Z

Factor 2 is subtracted from a field of zeros. The difference, which is the negative
of factor 2, is placed in the result field. You can use the operation to change the
sign of a field. Factor 1 is not used. Factor 2 must be numeric and can contain

one of the following: an array, array element, field, figurative constant, literal,

named constant, subfield, or table name.

The result field must be numeric, and can contain one of the following: an array,

array element, subfield, or table name.

Half-adjust (position 53) can be specified.

For the rules for the Z-SUB operation, see “Arithmetic Operations” on page 189.

See Figure 33 on page 191 for an example of the Z-SUB operation.

Chapter 11. Operation Codes 379

Z-SUB

380 RPG/400 Reference

RPG/400 Words with Special Functions

Chapter 12. RPG/400 Words with Special Functions

The following RPG/400 reserved words have special functions within a program:

© Copyright IBM Corp. 1994

e UDATE, =DATE, UMONTH, *MONTH, UYEAR, *YEAR, UDAY, and *DAY allow you to

access the system date, or a portion of it, to be used in the program.

PAGE, PAGE1-PAGE7 can be used for numbering the pages of a report, for record
sequence numbering, or to sequentially number output fields.

Figurative constants (*BLANK/*BLANKS, *ZERO/*ZEROS, *HIVAL, *LOVAL,
*ON/*0FF, *ALLX'x1..', and *ALL'X..") are implied literals that allow specifica-
tions without referring to length.

*IN and *INxx allow indicators to be referred to as data.

The following reserved words define symbolic locations within the file informa-
tion data structure (INFDS) and the program status data structure.

*FILE
*0PCODE
*PARMS
*PROGRAM
*RECORD
*ROUTINE
*STATUS

The following reserved words provide symbolic labels for the ENDSR operation
for the file and program exception/error subroutines or for the INFDS.

*CANCL Cancel the program
*DETC Detail calculations
*DETL Detall lines

*GETIN Get input record
*INIT Program initialization
*QFL Overflow lines

*TERM Program ending
*TOTC Total calculations
*TOTL Total lines

e Special words used with operation codes.

*DEFN
*ENTRY
*INZSR
*LDA
*LIKE
*LOCK
*NAMVAR
*0FF
*ON
*PDA
*PSSR

381

RPG/400 Words with Special Functions

Special words used with translation.

«FILE
*EQUATE

*PLACE allows repetitive placement of fields in an output record. (See “*PLACE”
on page 177 for more information.)

*ALL allows all fields that are defined for an externally described file to be
written on output. (See “Rules for Figurative Constants” for more information
on *ALL)

User Date Special Words

The user date special words (UDATE, *DATE, UMONTH, *MONTH, UDAY, =*DAY, UYEAR,
*YEAR) allow the programmer to supply a date for the program at run time. The
user date special words access the job date that is specified in the job description.
The user dates can be written out at output time, and are written in the format
specified by the control specification. (For a description of the job date, see the
Work Management Guide.)

Rules for User Date
Remember the following rules when using the user date:

382

RPG/400 Reference

UDATE, when specified in positions 32 through 37 of the output specifications,
prints a 6-character numeric date field. *DATE, when similarly specified, prints
an 8-character (4-digit year portion) numeric date field. Both special words can
produce three different date formats:

Month/day/year
Year/month/day
Day/month/year

Use positions 19 and 20 of the control specification to specify the date format
and the editing to be done. If positions 19 and 20 are blank, the date format is
determined by the contents of position 21.

For an interactive or batch program, the user date special words are set to the
value of the Job Date when the program starts running in the system. The
value of the user date special words are not updated during program execution
even if the program runs over midnight or if the job is changed. Use the TIME
operation code to obtain the time and date while the program is running.

UMONTH, *MONTH, UDAY, =*DAY, and UYEAR when specified in positions 32 through
37 of the output specifications, print a 2-position numeric date field. *YEAR can
be used to print a 4-position humeric date field. Use UMONTH or *MONTH to print
the month only, UDAY or *DAY to print the day only, and UYEAR or *YEAR to print
the year only.

UDATE and *DATE can be edited when they are written if the Y edit code is speci-
fied in position 38 of the output specifications. The control specification entry in
position 20 determines the separator character to be inserted; for example,
12/31/88, 31.12.88., 12/31/1988.

UMONTH, *MONTH, UDAY, =*DAY, UYEAR and *YEAR cannot be edited by the Y edit
code in position 38 of the output specifications.

The user date special words can be used in factor 1 or factor 2 of the calcu-
lation specifications for operation codes that use numeric fields.

RPG/400 Words with Special Functions

Note: The operation codes CLEAR and RESET, the array index for factor 2 of
LOKUP, and factor 1 of PARM are exceptions to this rule. The user date special
words cannot be used with them.

The user date special words cannot appear as the result field in a calculation or
as an input field.

Blank-after (position 39 of the output specifications) cannot be used with user
date special words.

*YEAR is a 4-digit numeric field containing the year portion of the job date.

*MONTH and *DAY function precisely as UMONTH and UDAY, respectively.

PAGE, PAGE1-PAGEY

PAGE is used to number the pages of a report, to serially number the output records
in a file, or to sequentially number output fields. It does not cause a page eject.
PAGE1 through PAGE7 are used to serially number several output files.

The eight possible PAGE entries (PAGE, PAGE1, PAGE2, PAGE3, PAGE4, PAGE5,
PAGE6, and PAGE7) may be needed for numbering different types of output pages or
for numbering pages for different printer files.

PAGE and PAGE1 through PAGE7 can be specified in positions 32 through 37 of the
output specifications or in the input or calculation specifications.

Rules for PAGE, PAGE1-PAGE7

Remember the following rules when using the PAGE fields:

When a PAGE field is specified in the output specifications, without being defined
elsewhere, it is assumed to be a four-digit, numeric field with zero decimal posi-
tions.

Page numbering, unless otherwise specified, starts with 0001; and 1 is auto-
matically added for each new page.

To start at a page number other than 1, enter that page number in a field of an
input record and name that field PAGE in positions 53 through 58, or use a cal-
culation operation such as Z-ADD. The number entered in the PAGE field should
be one less than the starting page number. For example, if numbering starts
with 24, enter a 23 in the PAGE field. The PAGE field can be of any length but
must have zero decimal positions (see Figure 97 on page 384). Any entry in
the PAGE field should be right-adjusted, such as 0023.

Page numbering can be restarted at any point in a job. The following methods
can be used to reset the PAGE field:

— Specify blank-after (position 39 of the output specifications).

— Specify the PAGE field as the result field of an operation in the calculation
specifications.

— Specify output indicators in the output specifications (see Figure 98).
Output indicators cannot be used to control the printing of a PAGE field,
because a PAGE field is always written.

— Specify the PAGE field as an input field as shown in Figure 97.

Chapter 12. RPG/400 Words with Special Functions 383

RPG/400 Words with Special Functions

e lLeading zeros are automatically suppressed (Z edit code is assumed) when a
PAGE field is printed unless an edit code, edit word, or data format (P/B/L/R in
position 44) has been specified. Editing and the data format override the sup-
pression of leading zeros.

e PAGE can be specified in input or calculation specifications, and can be of any
length. When the PAGE field is defined in input and calculation specifications, it
is treated as a field name in the output specifications and zero suppression is
not automatic.

LA R . G D Y DU R FUPUPPE. AP ¢ AP R AN
[FilenameSqNORiPosINCCPos2NCCPos3NCC.PFromTo++DField+LIM1FrPIMnZr. ..
IINPUT PG 50 1 CP

I 2 50PAGE

Figure 97. Page Record Description

LI [A TG A DR SRR R s NUTPINE RPN DU RN A
OName++++DFBASbSaNO1INO2NO3Field+YBEnd+PConstant/editword+++++++++. ..
0* When indicator 15 is on, the PAGE field is set to zero and 1 is
0+ added before the field is printed. When indicator 15 is off, 1
O+ is added to the contents of the PAGE field before it is printed.
OPRINT H 01 L1

0 15 PAGE 1 75

Figure 98. Resetting the PAGE Fields to Zero

Figurative Constants

The figurative constants *BLANK/*BLANKS, *ZERO/*ZEROS, *HIVAL, =*LOVAL,
*ALL'x.."', *ALLX'x1.."' and *ON/*OFF are implied literals that can be specified
without a length, because the implied length and decimal positions of a figurative
constant are the same as those of the associated field. (For exceptions, see the
following section, “Rules for Figurative Constants” on page 385.)

Figurative constants can be specified in positions 18 through 27 (factor 1) and in
positions 33 through 42 (factor 2) of the calculation specifications. The following
shows the reserved words and implied values for figurative constants:

Reserved Words Implied Values

*BLANK/*BLANKS All blanks. Valid only for character fields.

*ZERO/*ZERQS Character/numeric fields: All zeros.

*HIVAL Character fields: The highest collating character for the
system (hexadecimal FFs).
Numeric fields: All nines with a positive sign.

*LOVAL Character fields: The lowest collating character for the system
(hexadecimal zeros).
Numeric fields: All nines with a negative sign.

384 RPG/400 Reference

RPG/400 Words with Special Functions

*ALL'x..' Character/numeric fields: Character string x . . is cyclically
repeated to a length equal to the associated field. If the field
is a numeric field, all characters within the string must be
numeric (0 through 9). No sign or decimal point can be speci-
fied when *ALL'x..' is used as a numeric constant.

*ALLX'x1.." Character fields: The hexadecimal literal X'x1.."is cyclically
repeated to a length equal to the associated field.

*ON/*OFF *ON is all ones. *OFF is all zeros. Both are only valid for char-
acter fields.

Rules for Figurative Constants
Remember the following rules when using figurative constants:

» Figurative constants are considered elementary items. Except for MOVEA, figura-
tive constants act like a field if used in conjunction with an array. For example:
MOVE =ALL'XYZ' ARR.

If ARR has 4-byte character elements, then each element will contain 'XYZX".

e MOVEA is considered to be a special case. The constant is generated with a
length equal to the portion of the array specified. For example:

— MOVEA *BLANK ARR,X
Beginning with element X, the remainder of ARR will contain blanks.
— MOVEA =ALL'XYZ' ARR,X

ARR has 4-byte character elements. Element boundaries are ignored, as is
always the case with character MOVEA operations. Beginning with element
X, the remainder of the array will contain 'XYZXYZXYZ...".

Note that the results of MOVEA are different from those of the MOVE example above.

e After figurative constants are set/reset to their appropriate length, their normal
collating sequence can be altered if an alternate collating sequence is speci-

fied.
e The move operations MOVE and MOVEL produce the same result when moving
the figurative constants *ALL'x..' and *ALLX'x1.."'. The character string is

cyclically repeated character by character (starting on the left) until the length of
the associated field is the same as the length of the character string.

e Figurative constants are valid in compare operations such as COMP, CAB, DOU,
DOW, and IF; when the associated field in the compare operations is the field
with which the figurative constant is to be compared.

e Figurative constants are not allowed in factor 1 of a DEBUG or DSPLY operation or
in factor 2 of MHLZO, MLHZO, MHHZO, MLLZO, BITON, BITOF, TESTB, or SQRT
operations.

e The figurative constants, *BLANK/*BLANKS, are moved as zeros to a humeric
field in a MOVE operation.

e *BLANK/*BLANKS do not cause any storage allocation if used in factor 2. Other-
wise, storage equivalent to the implied length of blanks is used. The perform-
ance of *BLANK/*BLANKS is equal to using spaces when the implied length of
blanks is less than or equal to 140.

Chapter 12. RPG/400 Words with Special Functions 385

RPG/400 Words with Special Functions

386 RPG/400 Reference

Chapter 13. Using Arrays and Tables

An array is a systematic program-internal arrangement of data fields (array ele-
ments) with the same field length, data type (character or numeric), and number of
decimal positions (if numeric). You can search an array sequentially for an identifi-
able array element, or you can refer to an array element by its position within the
array. With some operations, you can refer to all of the array elements by using
only the array name.

A table is also a systematic program-internal arrangement of data fields (table ele-
ments) with the same field length, data type (character or numeric), and number of
decimal positions (if numeric). You search a table sequentially, using the LOKUP
operation, to find a uniquely identifiable table element and any associated data.
You cannot refer to table elements by their position within the table. Except in the
LOKUP operation, the table name refers to the last table element found in a LOKUP
operation. Unlike an array name, the table name does not refer to the entire set of
table elements.

The next section describes how to code an array, how to specify the initial values
of the array elements, how to change the values of an array, and the special con-
siderations for using an array. The section after the next describes the same infor-
mation for tables.

Arrays

Array Name and

© Copyright IBM Corp. 1994

There are three types of arrays:

e The run-time array is loaded by your program while it is running.

e The compile-time array is loaded when your program is created. It becomes a
permanent part of your program.

e The prerun-time array is loaded from an array file when your program begins
running, before any input, calculation, or output operations are processed.

The essentials of defining and loading an array are described for a run-time array.
For defining and loading compile-time and prerun-time arrays you use these essen-
tials and some additional specifications.

Index

You refer to an entire array using the array name alone. You refer to the individual
elements of an array using (1) the array name, followed by (2) a comma, followed
by (3) an index (for example: AR,IND). The index indicates the position of the
element within the array and is either a number or a field containing a number.

The following rules apply when you specify an array name and index:

e The array name must be a unique symbolic name.

e The array name with comma and index can be up to 6 characters long. If the
array is only specified in factor 1 or factor 2 of calculation specifications, the
array name with comma and index can be up to 10 characters long.

e The index is a numeric field with zero decimal positions, or a numeric constant.

e At run time, if your program refers to an array using an index with a value that
is zero, negative, or greater than the number of elements in the array, then the
error/exception routine takes control of your program.

387

Here are some examples of valid and invalid specifications of an array name and
index:

e Valid Array Names and Indexes:

AR,1 This is the first element of array AR.

X,YY2 This is an element of array X. The index indicates which element of
the array this is. YY2 is the name of a field containing the index
value.

* Invalid Array Names and Indexes:
AR,+1 The array name has an invalid signed index.
AR,0 The index value must be between 1 and the number of elements in

the array, inclusive.
* Array Names and Indexes Valid in Some Situations:

BAL,XX1 The name including the comma has more than 6 characters. This
name is only valid for factor 1 and factor 2 of calculation specifica-
tions. It is not a valid name for the result field because the result
field is only six positions long.

The Essential Array Specifications
You define an array on an extension specifications line. Here are the essential
specifications for all arrays:

* Specify the array name in positions 27 through 32.

¢ Specify the number of entries in the array, right justified, in positions 36 through
39.

» Specify the length of an entry, right justified, in positions 40 through 42.

e |f the array elements are numeric, specify the number of decimal positions in
position 44,

Figure 99 shows an example of the essential array specifications.

Coding a Run-Time Array

If you make no further specifications beyond the essential array specifications, you
have defined a run-time array. Note that positions 33 through 35 must be blank for
a run-time array.

O [P A~ SRR URRPID: DRI R SR NN . SN SR ; SRR SNy A
E....FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments
E ARC 12 3

Figure 99. The Essential Array Specifications to Define a Run-Time Array

Loading a Run-Time Array

You assign initial values for a run-time array through input or calculation specifica-
tions. You may also put data into other types of arrays this way.

For example, you may use the calculation specifications for the MOVE operation to
put 0 in each element of an array (or in selected elements).

Using the input specifications, you may fill an array with the data from a file. The
following sections provide more details on storing this data in the records of a file.

388 RPG/400 Reference

Array Information in One Record
If the array information is contained in one record, the information can occupy con-
secutive positions in the record or it can be scattered throughout the record.

If the array elements are consecutive on the input record, the array can be loaded
with a single input specification. Figure 100 shows the specifications for loading an
array, INPARR, of six elements (12 characters each) from a single record from the
file ARRFILE.

N [V A AR DUPIDIE ARy S ST, AU SRR ¢ DA Y AR
E....FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments

E INPARR 6 12
IFilenameSgNORiPos1INCCPos2NCCPos3NCC.PFromTo++DField+L1IM1FrPIMnZr. . .*
IARRFILE AA 01

I 1 72 INPARR

Figure 100. Defining a Run-Time Array with Consecutive Elements

If the array elements are scattered throughout the record, they can be defined and
loaded one at a time, with one element described on a specification line.

Figure 101 shows the specifications for loading an array, ARRX, of six elements with
12 characters each, from a single record from file ARRFILE; a blank separates each
of the elements from the others.

S IR 7 TP PPN DU’ S DU DUV DU ; DRPIR Y S
E....FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments
E ARRX 6 12
IFilenameSgNORiPos1INCCPos2NCCPos3NCC.PFromTo++DField+L1IM1FrPIMnZr. . .*
IARRFILE AA 01
1 12 ARRX,1
14 25 ARRX,2
27 38 ARRX,3
40 51 ARRX,4
53 64 ARRX,5
66 77 ARRX,6

Figure 101. Defining a Run-Time Array with Scattered Elements

b b b b -

When an array is located in a data structure, all of the elements of the array are
consecutive in the data structure.

Array Information in More Than One Record

If the array information is in more than one record, you may use various methods to
load the array. The method to use depends on the size of the array and whether or
not the array elements are consecutive in the input records. Figure 103 on

page 391 shows the array that results when array information is loaded from more
than one input record. Each record identified by a 1 or 3 in position 1 contains 12
elements of array information. Records identified by a 2 in position 1 do not
contain array information, although they appear in the same input file. The RPG/400
program processes one record at a time. Therefore the entire array is not proc-
essed until all the records containing the array information are read and the infor-

Chapter 13. Using Arrays and Tables 389

mation is moved into the array fields. It may be necessary to suppress calculation
and output operations until the entire array is read into the program.

Sequencing Run-Time Arrays

Run-time arrays are not sequence checked. If you process a SORTA (sort an array)
operation, the array is sorted into the sequence specified on the extension specifi-
cations (A or D in position 45) defining the array. If the sequence is not specified,
the array is sorted into ascending sequence. When the high (positions 54 and 55
of the calculation specifications) or low (positions 56 and 57 of the calculation spec-
ifications) indicators are used in the LOKUP operation, the array sequence must be
specified.

Coding a Compile-Time Array

For a compile-time array, you must specify in positions 33-35 of the extension
specification how many array entries are in an array input record. This is in addi-
tion to the required array specifications on the extension specification. See the
specifications in Figure 102.

Loading a Compile-Time Array

*

**

For a compile-time array, enter array input data into records in the program source
member, following the source records for this program, and following the alternate
collating sequence records and file translation records, if any. This data is loaded
into the array when the program is compiled. Until the program is recompiled with
new data, the array will always initially have the same values each time you call the
program.

Rules for Array Input Records
The rules for array input records are:

e The first array entry for each input record must begin in position 1.

e An entire record need not be filled with entries. If it is not, blanks or comments
can be included after the entries (see Figure 102). The unused entries in
numeric arrays are filled with zeros; the unused entries in character arrays are
filled with blanks.

B R T O FUPIE. Y SR T DUV DR DRME. S

E..
E

..FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments

ARC 12 12 3

48K16343J64044H12648A47349K34650B125

48K

163

43J

640 | 44H | 126 | 48A | 473 | 49K | 346 | 50B | 125

This is the compile-time array, ARC.

Figure 102. Array Input Record with Comments

390

e Each input record except the last must contain the same number of entries. A
record can contain one entry or as many entries as the record can hold with
the exception of the last record. In the last record, unused entries must be
blank and comments can be included after the unused entries. Comments in

RPG/400 Reference

the last record must begin in the same position as comments in preceding
records.

e Each entry must be contained entirely on one input record. An entry cannot be
split between two records; therefore, the length of a single entry is limited to the
maximum length of 80 characters (size of source record). If arrays are used
and are described in alternating format, corresponding elements must be on the
same input record; together they cannot exceed 80 characters.

e Arrays can be described separately or in alternating format. Alternating format
means that the elements of one array are intermixed on the input record with
elements of another array.

Records from Input File Resulting Array

3 GROUP2 007609950189024900770043 gggi’

0143 From

0691 Record 1
0433
0032
0995

0189 \ From
0249 Record 3
0077

—>» 1 GROUP1 004900610143069104330032 0043 | _J

J{

Figure 103. Loading an Array from Input Records

¢ All elements of an array must have the same characteristics (length, format and
number of decimal positions, if numeric).

* A record with **b (b = blank) in positions 1 through 3 must precede the first
input record of each array.

e Arrays are loaded in the order in which they are described in the extension
specifications.

» Character array elements can contain a maximum of 80 positions. Numeric
array elements can contain a maximum of 30 positions.

e Arrays can be in ascending, descending, or no sequence (A, D, or blank in
positions 45 and 57 of the extension specifications).

e If L or R is specified in positions 43 and 55 of the extension specifications, the
length specified for each element must include the sign (+ or -).

Chapter 13. Using Arrays and Tables 391

Coding a Prerun-Time Array

*- .
E..
Ex*
E*
E*
E
E*
Ex*
Ex*
E=*
E*
E
E*
E*
Ex*
E
E*
Ex*
E*
E*
Ex*
E

On the extension specifications, in addition to the essential array specifications,
specify the name of the file with the array input data, in positions 11 through 18. In
positions 19 through 26, you may optionally specify the name of a file to which the
array is written at the end of the program. If the file is a combined file (specified by
a C in position 15 of the file description specifications), the names in 11 through 18
and 19 through 26 must be the same.

In position 43, specify a P if the array data is in packed format, B if the data is in
binary format, L to indicate a sign on the left of a data element, or R to indicate a
sign on the right of a data element. Otherwise, leave position 43 blank.

Specify a T in position 16 of the file description specifications for the file with the
array input data.

Compare the coding of two prerun-time arrays, a compile-time array, and a run-time
array in Figure 104.

B RS DA UG TIPSR TIPS DU PRI ¢ DUPIPIPE Y A
..FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments
Compile-time arrays in alternating format. Both arrays have
eight elements (three elements per record). In both arrays, the
length of each element is 12, with four decimal positions.

ARC 3 812 4 ARD 12 4

Prerun-time array. ARE, which is to be read from file DISKIN,
has 250 character elements (12 elements per record). Each element
is five positions long. The elements are arranged in
ascending sequence.
DISKIN ARE 12 250 5 A

Run-time array. ARI has 10 numeric elements, each 10 positions
with zero decimal positions.
ARI 10 10 0

Prerun-time array specified as a combined file. ARH is written

back to the same file from which it is read. ARH has 250

character elements (12 elements per record). Each elements is five

positions long. The elements are arranged in ascending sequence.
DISKOUT DISKOUT ARH 12 250 5 A

Figure 104. Extension Specifications for Four Types of Arrays

392

Figure 104 shows the extension specifications required for four types of arrays.

For compile-time arrays, positions 19 through 26 can also contain the name of a file
to which the array is to be written at end of job. For prerun-time arrays, positions
46 through 51 can also describe an array that is entered in alternating format with
the array described in positions 27 through 32.

RPG/400 Reference

Loading a Prerun-Time Array
For a prerun-time array, enter array input data into a file. The file must be a
sequential program described file. When you call a program, but before any input,
calculation, or output operations, are processed the array is loaded with initial
values from the file. By modifying this file, you can alter the array's initial values on
the next call to the program, without recompiling the program. The file is read in
arrival sequence.

Data Structure Initialization with Arrays

Run-Time Arrays
To initialize each element in a run-time array to the same value, specify the array
as a data structure subfield, place an | in position 8, and specify the initialization
value in positions 21 to 42 of the input specifications. In the case where a subfield
initialization overlaps a run-time array, the normal rules for data structure initializa-
tion overlap apply (the initialization is done in the order that the fields are declared
within the data structure).

Compile-Time and Prerun-Time Arrays
Subfield initialization values (positions 21 to 42 of the input specifications) cannot
be specified for a compile-time or prerun-time array, because they are initialized by
definition. If a compile-time or prerun-time array appears in a globally initialized
data structure (I in position 8 of the input specifications), it is not included in the
global initialization.

Note:

Compile-time arrays are initialized in the order in which the data is declared after
the program, and prerun-time arrays are initialized in the order of declaration of
their initialization files, regardless of the order in which these arrays are declared in
the data structure.

If a subfield initialization overlaps a compile-time or prerun-time array, the initializa-
tion of the array takes precedence; that is, the array is initialized after the subfield,
regardless of the order in which fields are declared within the data structure.

Defining More than one Array
There are three ways that you can define more than one array, which are:

e Defining two run-time arrays
e Mixing compile-time and prerun-time arrays
¢ Loading two compile-time or two prerun-time arrays in alternating format.

Two Run-Time Arrays

You can specify two run-time arrays on one extension specifications line by
entering a second array name, length of entry, and decimal position in positions 46
through 57 of the first array's extension specifications.

Chapter 13. Using Arrays and Tables 393

Mixing Compile-Time and Prerun-Time Arrays

The specifications for compile-time and prerun-time arrays and tables can be inter-
mixed in the extension specifications. The sequence in which arrays are specified

in the extension specifications determines the order in which they are loaded at the
start of the program.

Arrays in Alternating Format

You can load two compile-time arrays or two prerun-time arrays in alternating
format by specifying a second array name, length of entry, and decimal position in
positions 46 through 57 of the first array's extension specifications. Arrays in this
format are referred to as alternating arrays . (Tables are called alternating
tables.) The records for storing the data for such arrays have the first element of
the first array followed by the first element of the second array, the second element
of the first array followed by the second element of the second array, the third
element of the first array followed by the third element of the second array, and so
on. Corresponding elements must appear on the same record. The specification
for the number of entries per record in positions 33 through 35 of the extension
specifications indicates the number of corresponding pairs per record, each pair of
elements counting as a single entry.

Figure 105 shows two arrays, ARRA and ARRB, in alternating format.

ARRA ARRB
(Part Number) (Unit Cost)

345126 373

38A437 498

39K143 1297

40B125 93

41C023 3998 Arrays ARRA and ARRB can be described
as two separate array files or as one

42D893 87 array file in alternating format.

43K823 349

44H111 697

45P673 898

46(C732 47587

Figure 105. Arrays in Alternating and Nonalternating Format

The records for ARRA and ARRB look like the records below when described as two
separate array files.

This record contains ARRA entries in positions 1 through 60.

394 RPG/400 Reference

ARRA | ARRA | ARRA | ARRA | ARRA | ARRA | ARRA | ARRA | ARRA | ARRA
entry| entry| entry| entry| entry| entry| entry| entry| entry| entry

1..... /N 13....019....025....|31....|37....|43....]49....|55....

Figure 106. Arrays Records for Two Separate Array Files

This record contains ARRB entries in positions 1 through 50.

ARRB | ARRB | ARRB | ARRB | ARRB | ARRB | ARRB | ARRB | ARRB | ARRB
entry| entry| entry| entry| entry| entry| entry| entry| entry| entry

1..... 6..... 11....(16....]21....|26....|31....|36....[41....|46....

Figure 107. Arrays Records for One Array File

The records for ARRA and ARRB look like the records below when described as one
array file in alternating format. The first record contains ARRA and ARRB entries in
alternating format in positions 1 through 55. The second record contains ARRA and
ARRB entries in alternating format in positions 1 through 55.

ARRA | ARRB | ARRA | ARRB | ARRA | ARRB | ARRA | ARRB | ARRA | ARRB
entry| entry| entry| entry| entry| entry| entry| entry| entry| entry

1..... Teeenn 12....(18....]23....]29....|34....|40....[45....|51....

Figure 108. Arrays Records for One Array File in Alternating Format

Searching Arrays

The LOKUP operation can be used to search arrays. See “LOKUP (Look Up)” on
page 286 for a description of the LOKUP operation.

Searching an Array without an Index

When searching an array without an index, use the status (on or off) of the
resulting indicators to determine whether a particular element is present in the
array. Searching an array without an index can be used for validity checking of
input data to determine if a field is in a list of array elements. Generally, an equal
LOKUP is requested.

In factor 1 in the calculation specifications, specify the search argument (data for
which you want to find a match in the array named). Factor 1, the search argu-
ment, can be:

e A character or numeric literal
e A field name

¢ A data structure name

* An array element

e A table name.

Chapter 13. Using Arrays and Tables 395

Specify the operation code LOKUP in positions 28 through 32. In factor 2 specify the
name of the array to be searched. At least one resulting indicator must be speci-
fied. Entries must not be made in both high and low for the same LOKUP operation.
The resulting indicators must not be specified in high or low if the array is not in
sequence (A or D in position 45 and/or position 57 of the extension specifications).
Conditioning indicators (specified in positions 7 through 17) can also be used. The
result field cannot be used.

The search starts at the beginning of the array and ends at the end of the array or
when the conditions of the lookup are satisfied. Whenever an array element is
found that satisfies the type of search being made (equal, high, low), the resulting
indicator is set on.

Figure 109 shows an example of a LOKUP on an array without an index.

L DU, R, R I TR U R U O U Y A

FFilenameIPEAF....R1enLK1AIOvKlocEDevice+...... KExit++Entry+A....Ul.
FARRFILE IT F 5 EDISK

F+

E....FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments

E ARRFILE DPTNOS 1 50 50 DEPT NUMBERS

Ex*

CLONOINO2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments+++++++
C* The LOKUP operation is processed and, if an element of DPTNOS equal
Cx to the search argument (DPTNUM) is found, indicator 20 is set on.

C DPTNUM LOKUPDPTNOS 20

C*

Cx Otherwise, indicator 20 is not set on and the GOTO statement

Cx conditioned by N20 causes a branch to the BADNUM TAG.

C N20 GOTO BADNUM

C :

C : Calculations
C :

C BADNUM TAG

Figure 109. LOKUP Operation for an Array without an Index

ARRFILE, which contains department numbers, is defined in the file description spec-
ifications as an input file (I in position 15) with an array file designation (T in posi-
tion 16). The file is program described (F in position 19), and each record is 5
positions in length (5 in position 27). The E in position 39 indicates that the file is
further described in the extension specifications.

In the extension specifications, ARRFILE is defined as containing the array DPTNOS.
The array contains 50 entries (positions 38 and 39). Each entry is 5 positions in
length (position 42) with zero decimal positions (position 44). One department
number can be contained in each record (1 in position 35). However, each record
does not have to contain an entry. Any record that does not contain an entry is
filled with zeros.

396 RPG/400 Reference

Searching an Array with an Index

To find out which element satisfies a LOKUP search, start the search at a particular
element in the array. To do this type of search, make the entries in the calculation
specifications as you would for an array without an index. However, in positions 33
through 42, enter the name of the array to be searched, followed by a comma and
a numeric constant or the name of a numeric field (with zero decimal positions)
containing the number of the element to be used. The numeric constant or numeric
field provides the number of the element at which the search is to start. This
numeric constant or field is called the index because it points to a certain element
in the array. All other rules that apply to an array without an index apply to an
array with an index.

Figure 110 shows a LOKUP on an array with an index.

L I R . D R | S TN PUME. U ¢ DRPR Y A
FFilenameIPEAF....R1enLK1AIOvKTocEDevice+...... KExit++Entry+A....Ul.

FARRFILE IT F 5 EDISK

F+
E....FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments+++++++++
E ARRFILE DPTNOS 1 50 5 O DPTDSC 20 DEPT NO/DESCRPTN
Ex

CLONOINOZ2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComments+++++++
Cx The Z-ADD operation begins the LOKUP at the first element in DPTNOS.
C Z-ADD1 X 30 SET X FOR LOKUP
C* At the end of a successful LOKUP, when an element has been found

C* that contains an entry equal to the search argument DPTNUM,

C* indicator 20 is set on and the MOVE operation places the department
C* description, corresponding to the department number, into DPTNAM.

C DPTNUM LOKUPDPTNOS, X 20

Cx If an element is not found that is equal to the search argument,

C* the GOTO operation conditioned by N20 causes a branch to BADNUM.

C N20 GOTO BADNUM

C MOVE DPTDSC,X DPTNAM 20

C BADNUM TAG

Figure 110. LOKUP Operation on an Array with an Index

This example shows the same array of department numbers, DPTNOS, as

Figure 109 on page 396. However, an alternating array of department
descriptions, DPTDSC, is also defined in positions 46 through 51 of the extension
specifications. Each element in DPTDSC is 20 positions in length (positions 53 and
54). Any record in DPTNOS that does not contain an entry is filled with zeros. Any
record in DPTDSC that does not contain an entry is filled with blanks.

Chapter 13. Using Arrays and Tables 397

Specifying Arrays

Arrays can be used in input, output, or calculation specifications after they are
specified on the extension specifications.

Specifying an Array in Calculations

An entire array or individual elements in an array can be specified in calculation
specifications. You can process individual elements like fields. Remember, if an
array element is to be used as a result field, the array name with the comma and
index cannot exceed 6 characters.

To specify an entire array, use only the array name, which can be used as factor 1,
factor 2, or the result field. The following operations can be used with an array
name: ADD, Z-ADD, SUB, Z-SUB, MULT, DIV, SQRT, MOVE, MOVEL, MOVEA, MLLZO,
MLHZO, MHLZO, MHHZO, DEBUG, XFOOT, LOKUP, SORTA, PARM, DEFN, CLEAR, RESET,
CHECK, CHEKR, and SCAN.

Several other operations can be used with an array element only but not with the
array name alone. These operations include but are not limited to: BITON, BITOF,
COMP, CABxx, TESTZ, TESTN, TESTB, MVR, DOUxx, DOWxx, IFxx, SUBST, and CAT.

When specified with an array name without an index, certain operations are
repeated for each element in the array. These are ADD, Z-ADD, SUB, Z-SUB,
MULT, DIV, SQRT, MOVE, MOVEL, MLLZO, MLHZO, MHLZO and MHHZO. The following
rules apply to these operations when an array name without an index is specified:

¢ When factors 1 and 2 and the result field are arrays with the same number of
elements, the operation uses the first element from every array, then the
second element from every array until all elements in the arrays are processed.
If the arrays do not have the same number of entries, the operation ends when
the last element of the array with the fewest elements has been processed.
When factor 1 is not specified for the ADD, SUB, MULT, and DIV operations,
factor 1 is assumed to be the same as the result field.

¢ When one of the factors is a field, a literal, or a figurative constant and the
other factor and the result field are arrays, the operation is done once for every
element in the shorter array. The same field, literal, or figurative constant is
used in all of the operations.

¢ The result field must always be an array.

¢ |f an operation code uses factor 2 only (for example, Z-ADD, Z-SUB, SQRT, ADD,
SUB, MULT, or DIV do not have factor 1 specified) and the result field is an
array, the operation is done once for every element in the array. The same
field or constant is used in all of the operations.

¢ Resulting indicators (positions 54 through 59) cannot be used because of the
number of operations being processed.

Modifying Contents of Arrays

398

RPG/400 Reference

Arrays can be temporarily changed while the program is running when the array
name is used as a result field in an arithmetic or move operation. The appropriate
entry in the array is modified for the duration of the program. The next time the
program runs, however, the array contains the original entries. Temporary changes
can be made permanent if the input records are changed, or if the changed array is
written at end of program.

Figure 111 on page 399 shows the specifications for changing the contents of
arrays ARFL and ARLI.

The initialization operations CLEAR and RESET can also change the contents of an
array during program run-time. CLEAR sets all elements of an array to zero, blank,
or '0', depending on the array type (numeric, character or indicator respectively);
RESET sets them to their values as assigned at the end of the program initialization
step.

Adding Entries to Arrays
Entries can be added to arrays before or during run of the program. The simplest
way to add entries to an array is to write additional entries on the input records
before the program runs. However, entries that are created by calculation oper-
ations or read from an input record can also be added during the running of a
program.

Figure 112 shows how entries are added to numeric arrays with the LOKUP and
MOVE operations. Such entries are temporary unless they are written in array input
records. If these entries are to become a permanent part of the array, they must
be written in records and included with the other array file records.

LI IS A UG UM SPIPUIT DUPIPE. PP, AP OO c JUPIPPE. U A
CLONOINO2NO3Factorl+++OpcdeFactor2+++ResultLenDHHiLoEqComments+++++++

C 25 LOKUPARFL, X 10 FOUND
c 10 MOVE 500 ARLI,X
c 10 MOVE 30 ARFL,X

Figure 111. Changing Array Data with MOVE Operations

The element in ARFL,X that contains 25 to be changed to 30. The corresponding
element in ARLI,X is to be changed to 500. The search argument is the numeric
literal 25. The search starts at the array element specified in the index X. If the
search is successful, the number of the array element is placed in the index field
(X), and indicator 10 is set on. The new value in X can then be used to move 500
into the appropriate element in ARLI and to move 30 into the appropriate element in
ARFL.

LS I AR SRSTUPI. DUPIPIVE. UDRPUP' SUPRPR AR JUPIPUPE. PP ¢ DUPUPRP PPNy AN
CLONOINO2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments+++++++

c o1 000 LOKUPARRA, X 35 FOUND
C 3501 MOVE NEWA ARRA, X
C 3501 MOVE NEWB ARRB, X

Figure 112. Adding Entries to Arrays

The LOKUP operation is conditioned by indicator 01. Indicator 01 is set on when a
record containing information in the fields NEWA and NEWB is read. These fields are
to be added to the arrays ARRA and ARRB, respectively. To get the entry in the
correct place in the array, a search is made to find the first empty array element.
Unfilled entries in arrays are filled with zeros. Therefore, the search argument used
is 000. When the first 000 entry is found, indicator 35 is set on, and the NEWA and
NEWB fields are moved into the array elements ARRA,X and ARRB,X. These new ele-
ments become part of arrays ARRA and ARRB.

Chapter 13. Using Arrays and Tables 399

Array Output

Entire arrays can be written out under RPG/400 control only at end of program when
the LR indicator is on. To indicate that an entire array is to be written out, specify
the name of the output file to be used in positions 19 through 26 of the extension
specifications. This file must be described as a sequentially organized output or
combined file in the file description specifications.

If the file is a combined file and is externally described as a physical file, the infor-
mation in the array at the end of the program replaces the information read into the
array at the start of the program. Logical files may give unpredictable results.

If an entire array is to be written to an output record (using output specifications),
describe the array along with any other fields for the record:

e Positions 32 through 37 of the output specifications must contain the array
name used in the extension specifications.

e Positions 40 through 43 of the output specifications must contain the record
position where the last element of the array is to end. If an edit code is speci-
fied, the end position must include blank positions and any extensions due to
the edit code (see “Editing Entire Arrays” listed next in this chapter).

Output indicators (positions 23 through 31) can be specified. Zero suppress (posi-
tion 38), blank-after (position 39), and P = packed/B = binary and L = left/R = right
(position 44) entries pertain to every element in the array.

Arrays that are loaded with data by means of input or calculation specifications
cannot be written automatically at end of program.

Editing Entire Arrays

When editing is specified for an entire array, all elements of the array are edited. If
different editing is required for various elements, refer to them individually.

When an edit code is specified for an entire array (position 38), two blanks are
automatically inserted between elements in the array: that is, there are blanks to
the left of every element in the array except the first. When an edit word is speci-
fied, the blanks are not inserted. The edit word must contain all the blanks to be
inserted.

Tables

400

RPG/400 Reference

The explanation of arrays applies to tables except for the following differences:

Activity Differences

Defining A table name must be a unique symbolic name that begins with the
letters TAB.

Loading Tables can be loaded only at compilation time and prerun-time.

Searching The LOKUP operation can be used to search tables.

LOKUP with One Table

When a single table is searched, factor 1, factor 2, and at least one resulting indi-
cator must be specified. Conditioning indicators (specified in positions 7 through
17) can also be used.

Whenever a table element is found that satisfies the type of search being made
(equal, high, low), a copy of that table element is placed in an area in the system.
Every time a search is successful, the newly found table element is placed in this
area, replacing what was previously there. If the search is not successful, the con-
tents of the area remain the same as they were before the unsuccessful search.

Before a first successful LOKUP, the area in the system reserved for the table
element contains the first element of the table.

Resulting indicators reflect the result of the search. If the indicator is on, reflecting
a successful search, a copy of the element searched for is in the area.

LOKUP with Two Tables

When two tables are used in a search, only one is actually searched (see

Figure 113). When the search condition (high, low, equal) is satisfied, the corre-
sponding elements from both tables are placed in their respective areas in the
system and are made available for use.

Factor 1 must contain the search argument, and factor 2 must contain the name of
the table to be searched. The result field must name the table from which data is
also made available for use. A resulting indicator must also be used. Conditioning
indicators can be specified in positions 7 through 17, if needed.

The two tables used should have the same number of entries. If the table that is
searched contains more elements than the second table, it is possible to satisfy the
search condition. However, there might not be an element in the second table that
corresponds to the element found in the search table. Undesirable results can
occur.

Note: If you specify a table name in an operation other than LOKUP before a suc-
cessful LOKUP occurs, undesirable results can occur because the contents of the
area referenced by the table name contain a previous value.

TABEMP TABPAY TABEMP TABPAY
441 243 443 268
442 321]
443 is the —»| 443 268
argument
444 272
445 310

Figure 113. LOKUP Operation for Related Tables

Storage Areas: Tables TABEMP and TABPAY are read into storage. Assume an
input record is read with 443 in the EMPNUM field. With 443 as the search argument,
the table TABEMP can be searched for an equal entry. When the correct entry is
found, the table item 443 is moved into the storage area for TABEMP. At the same

Chapter 13. Using Arrays and Tables 401

time, the corresponding item 268 is moved into the storage area for TABPAY. The
contents of the areas can now to be used in subsequent calculation operations by
specifying the appropriate table name. The coding needed to process the LOKUP
operation also shows how to refer to the contents of the storage area after a suc-
cessful LOKUP operation.

LI I AR~ (PSPPI DUPIPITE. RO SO SLTUN. DU, PR ¢ DUPUPIPE PPNy AN
CLONOINO2NO3Factorl+++0OpcdeFactor2+++Resul tLenDHHiLoEqComments+++++++
C* The LOKUP operation searches TABEMP for an entry that is equal to
C* the contents of the field named EMPNUM. If an equal entry is

Cx found in TABEMP, indicator 09 is set on, and the TABEMP entry and
Cx its related entry in TABPAY are moved into their storage areas.

C EMPNUM LOKUPTABEMP TABPAY 09

C
C
C
Cx If indicator 09 is set on, the contents of the field named

C* HRSWKD are multiplied by the contents of the storage area for
C+ TABPAY. The storage area for TABPAY contains the element found
C* during the Tast successful LOKUP operation involving TABPAY.

cC 09 HRSWKD MULT TABPAY AMT 62H

Figure 114. Searching for an Equal Entry

Specifying the Table Element Found in a LOKUP Operation

Whenever a table name is used in an operation other than LOKUP, the table name
actually refers to the data retrieved by the last successful search. Therefore, when
the table name is specified in this fashion, elements from a table can be used in
calculation operations.

If the table is used as factor 1 in a LOKUP operation, the contents of the area in the
system are used as the search argument. In this way an element from a table can
itself become a search argument.

The table can also be used as the result field in operations other than the LOKUP
operation. In this case the contents of the area in the system are changed by the
calculation specification. The corresponding table element in the table in main
storage is also changed. In this way the contents of the table can be modified by
calculation operations (see Figure 115).

LI I A A EITITR: PUPIPIAE. AR’ SUPRUINE. PR DU AP ¢ AP PNy AN
CLONOINO2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments+++++++

C ARGMNT LOKUPTABLEA 20 SEARCH FOR =
Cx If element is found multiply by 1.5
C 20 TABLEA MULT 1.5 TABLEA

Figure 115. Specifying the Table Element Found in LOKUP Operations

402 RPG/400 Reference

Chapter 14. Editing Numeric Fields

Editing provides a means of punctuating numeric fields, including the printing of
currency symbols, commas, periods, minus sign, and floating minus. It also pro-
vides for field sign movement from the rightmost digit to the end of the field,
blanking zero fields, spacing in arrays, date field editing, and currency symbol or
asterisk protection. A field can be edited by edit codes, or edit words.

When you print fields that are not edited, the fields appear exactly as they are inter-
nally represented. The following examples show why you may want to edit numeric
output fields.

Type of Field

Field in the Com-
puter

Printing of Uned-
ited Field

Printing of
Edited Field

Alphanumeric

JOHN T SMITH

JOHN T SMITH

JOHN T SMITH

Numeric 0047652 0047652 47652
(positive)
Numeric 004765K 004765K 47652-
(negative)

The unedited alphanumeric field and the unedited positive numeric field are easy to
read when printed, but the unedited negative numeric field is confusing because it
contains a K, which is not numeric. The K is a combination of the digit 2 and the
negative sign for the field. They are combined so that one of the positions of the
field does not have to be set aside for the sign. The combination is convenient for
storing the field in the computer, but it makes the output hard to read. Therefore,
numeric fields need to be edited before they are printed.

This chapter also contains information about using edit codes to edit externally
described files.

Edit Codes

Edit codes are easier to use than edit words. Each of the edit codes edits in a
different way according to a predefined pattern.

Edit codes are divided into three categories: simple (X, Y, Z), combination (1
through 4, A through D, J through Q), and user-defined (5 through 9). You enter
the edit code in position 38 of the output specifications for the field to be edited.

Simple Edit Codes

© Copyright IBM Corp. 1994

You can use simple edit codes to edit numeric fields without adding any punctu-
ation. These codes and their functions are:

e The X edit code ensures a hexadecimal F sign for positive fields. However,
because the system does this, you normally do not have to specify this code.
Leading zeros are not suppressed. The X edit code does not modify negative
numbers.

e The Y edit code is normally used to edit a 3- to 9-digit date field. It suppresses
the leftmost zeros of date fields, up to but not including the digit preceding the

403

first separator. Editing for date fields is described in Table 36 on page 404.
Positions 20 (date edit) and 21 (decimal notation) of the control specification
can be used to alter edit formats.

e The Y edit code is not valid for *YEAR.

e The Z edit code removes the sign (plus or minus) from and suppresses the
leading zeros of a numeric field. The decimal point is not placed in the field
and is not printed.

Table 36. Edited Date Fields

Control Specification

UDATE/*DATE Edit Code Contents Contents Contents of Position 21
of Posi- of Posi-

tion 19 tion 20 Blank b -
January 30, 1998 Y Blank Blank 1/30/98 30/01/98 30.01.98
1/30/1998 | 30/01/1998 | 30.01.1998
- (dash) 1-30-98 30-01-98 30-01-98
1-30-1998 | 30-01-1998 | 30-01-1998
M Blank 1/30/98 1/30/98 1.30.98
1/30/1998 1/30/1998 1.30.1998
- (dash) 1-30-98 1-30-98 1-30-98
1-30-1998 1-30-1998 1-30-1998
D Blank 30/01/98 30/01/98 30.01.98
30/01/1998 | 30/01/1998 | 30.01.1998
- (dash) 30-01-98 30-01-98 30-01-98
30-01-1998 | 30-01-1998 | 30-01-1998
Y Blank 98/01/30 98/01/30 98.01.30
1998/01/30 | 1998/01/30 | 1998.01.30
- (dash) 98-01-30 98-01-30 98-01-30
1998-01-30 | 1998-01-30 | 1998-01-30

Any character may be specified in position 20 as the separator character. In this example, a dash is used.

Combination Edit Codes

404 RPG/400 Reference

numeric field.

The combination edit codes (1 through 4, A through D, J through Q) punctuate a

All of the edit codes suppress leading zeros to the left of the decimal notation
except when J is specified in position 21 (decimal notation) of the control specifica-
tion. (See the end of this section for further information on the J edit code.) The
decimal position of the source field determines whether and where a decimal point
is printed. If decimal positions are specified for the source field and the zero
balance is to be suppressed, the decimal notation prints only if the field is not zero.
If a zero balance is not to be printed, a zero field prints as blanks.

When a zero balance is to be printed and the field is equal to zero, either of the
following is printed:

e A decimal notation followed by n zeros, where n is the number of decimal
places in the field

e A zero in the units position of a field if no decimal places are specified.

You can use a floating currency symbol or asterisk protection with any of the 12
combination edit codes. To specify a floating currency symbol, code the currency
symbol in positions 45 through 47 of the output specifications, along with an edit
code in position 38 for the field to be edited. The floating currency symbol appears
to the left of the first significant digit. The floating currency symbol does not print
on a zero balance when an edit code is used that suppresses the zero balance. (A
dollar sign ($) is used as the currency symbol unless a currency symbol is specified
in position 18 of the control specification.)

An asterisk constant coded in positions 45 through 47 of the output specifications
(*"), along with an edit code for the field to be edited causes an asterisk to be
printed for each zero suppressed. A complete field of asterisks is printed on a zero
balance source field.

Asterisk fill and the floating currency symbol cannot be used with the simple (X, Y,
Z) or with the user-defined (5 through 9) edit codes.

A currency symbol can appear before the asterisk fill (fixed currency symbol). This
requires the following coding:

1. Place an edit code in position 38.

2. Place a currency symbol constant one space before the beginning of the edited
field.

3. Place ™" in positions 45 through 47 of the line containing the edit code.

When an edit code is used to print an entire array, two blanks precede each
element of the array (except the first element).

One of the decimal notation formats for output is a J entry in position 21 of the
control specification. If you specify J, the use of commas and periods is reversed;
that is, a period is used as the grouping separator character and a comma is used
as the decimal notation. The zero-suppression character is in the second position
(rather than the first) to the left of the decimal notation. This writes all zero bal-
ances and balances with zero values to the left of the comma with one leading zero
(0,00 or 0,04). The J entry also overrides any edit codes that might suppress the
leading zero. Remember that the decimal positions of the source field determine
whether and where a decimal notation is printed.

Another decimal notation format is an | in position 21 of the control specification. If
you specify |, a period is used as the grouping separator character and a comma is
used as the decimal notation.

Table 37 summarizes the functions of the combination edit codes. The codes edit
the field in the format listed on the left. A negative field can be punctuated with no
sign, CR, a minus sign (-), or a floating minus sign as shown on the top of the
figure.

Table 37 (Page 1 of 2). Combination Edit Codes

Negative Balance Indicator

Format of Edited Data No Sign CR - Floating
Minus
Prints with grouping separator characters, 1 A J N
prints zero balance

Chapter 14. Editing Numeric Fields 405

Table 37 (Page 2 of 2). Combination Edit Codes

Negative Balance Indicator

Format of Edited Data No Sign CR - Floating
Minus
Prints with grouping separator characters, 2 B K 0

zero balance suppressed

Prints without grouping separator characters, 3 C L P
prints zero balance

Prints without grouping separator characters, 4 D M Q
zero balance suppressed

User-Defined Edit Codes

IBM has predefined edit codes 5 through 9. You can use them as they are, or you
can delete them and create your own. For a description of the IBM-supplied edit
codes, see “Edit Descriptions” in Chapter 6 of the Programming Reference
Summatry.

The user-defined edit codes allow you to handle common editing problems that
would otherwise require the use of an edit word. Instead of the repetitive coding of
the same edit word, a user-defined edit code can be used. These codes are system
defined by the CL command CRTEDTD (Create Edit Description).

When you edit a field defined to have decimal places, be sure to use an edit word
that has an editing mask for both the fractional and integer portions of the field.
Remember that when a user-defined edit code is specified in a program, any
system changes made to that user-defined edit code are not reflected until the
program is recompiled. For further information on CRTEDTD, see the CL Reference.

Editing Considerations

Remember the following when you specify any of the edit codes:

e Edit fields of a non-printer file with caution. If you do edit fields of a non-printer
file, be aware of the contents of the edited fields and the effects of any oper-
ations you do on them. For example, if you use the file as input, the fields
written out with editing must be considered character fields, not numeric fields.

e Consideration should be given to data added by the edit operation. The
amount of punctuation added increases the overall length of the output field. If
these added characters are not considered, the output fields may overlap.

e The end position specified for output is the end position of the edited field. For
example, if any of the edit codes J through M are specified, the end position is
the position of the minus sign (or blank if the field is positive).

Summary of Edit Codes

406

Table 38 on page 407 summarizes the edit codes and the options they provide. A
simplified version of this table is printed above positions 45 through 70 on the
output specifications. Table 39 on page 408 shows how fields look after they are
edited.

Table 40 on page 409 shows the effect that the different edit codes have on the
same field with a specified end position for output.

RPG/400 Reference

Table 38. Edit Codes

Entry in Column 21 of Control Specifi-

cation
Edit Commas Decimal Sign for D or Blank I J Zero Sup-
Code Point Negative press
Balance
1 Yes Yes No Sign .00or0 ,000r0 0,00 or O Yes
2 Yes Yes No Sign Blanks Blanks Blanks Yes
3 Yes No Sign .00or0 ,000r0 0,00 0or 0 Yes
4 Yes No Sign Blanks Blanks Blanks Yes
5-91
A Yes Yes CR .000r0 ,000r0 0,00 or O Yes
B Yes Yes CR Blanks Blanks Blanks Yes
C Yes CR .00or0 ,00 0r0 0,00 or 0 Yes
D Yes CR Blanks Blanks Blanks Yes
J Yes Yes - (minus) .00o0r0 ,000r 0 0,00 or 0 Yes
K Yes Yes - (minus) Blanks Blanks Blanks Yes
L Yes - (minus) .00o0r0 ,00 0r 0 0,00 or O Yes
M Yes - (minus) Blanks Blanks Blanks Yes
N Yes Yes - (floating .00o0r0 ,00 0or O 0,00 or 0 Yes
minus)
(0] Yes Yes - (floating Blanks Blanks Blanks Yes
minus)
P Yes - (floating .000r0 ,00 or O 0,00 or 0 Yes
minus)
Q Yes - (floating Blanks Blanks Blanks Yes
minus)
X2 Yes
Y3 Yes
Z4 Yes

1These are the user-defined edit codes.

2The X edit code ensures a hexadecimal F sign for positive values. Because the system does this for you,

normally you do not have to specify this code.

3The Y edit code suppresses the leftmost zeros of date fields, up to but not including the digit preceding the first
separator. The Y edit code also inserts slashes (/) between the month, day, and year according to the following

pattern:

nn/n
nn/nn
nn/nn/n
nn/nn/nn
nnn/nn/nn
nn/nn/nnnn
nnn/nn/nnnn
nnnn/nn/nn
nnnnn/nn/nn

4The Z edit code removes the sign (plus or minus) from a numeric field and suppresses leading zeros.

Format
Format
Format
Format

used with M, D or blank in position 19
used with M, D or blank in position 19
used with Y in position 19
used with Y in position 19

Chapter 14. Editing Numeric Fields 407

Table 39. Examples of Edit Code Usage
Positive Positive Negative Negative Zero Zero
Number- Number- Number- Number- Balance- Balance-
Two No Three No Two No

Edit Decimal Decimal Decimal Decimal Decimal Decimal

Codes Positions Positions Positions Positions Positions Positions

Unedited 1234567 1234567 00012h5 00012hH5 000000 000000

1 12,345.67 1,234,567 .120 120 .00 0

2 12,345.67 1,234,567 .120 120

3 12345.67 1234567 .120 120 .00 0

4 12345.67 1234567 .120 120

5-91

A 12,345.67 1,234,567 .120CR 120CR .00 0

B 12.345.67 1,234,567 .120CR 120CR

C 12345.67 1234567 .120CR 120CR .00 0

D 12345.67 1234567 .120CR 120CR

J 12,345.67 1,234,567 .120- 120- .00 0

K 12,345,67 1,234,567 .120- 120-

L 12345.67 1234567 .120- 120- .00 0

M 12345.67 1234567 .120- 120-

N 12,345.67 1,234,567 -.120 -120 .00 0

o 12,345,67 1,234,567 -.120 -120

P 12345.67 1234567 -.120 -120 .00 0

Q 12345.67 1234567 -.120 -120

X2 1234567 1234567 00012b5 00012b5 000000 000000

Y3 0/01/20 0/01/20 0/00/00 0/00/00

Z4 1234567 1234567 120 120

1 These edit codes are user-defined.

408 RPG/400 Reference

2 The X edit code ensures a hex F sign for positive values. Because the system
does this for you, normally you do not have to specify this code.

3 The Y edit code suppresses the leftmost zeros of date fields, up to but not
including the digit preceding the first separator. The Y edit code also inserts
slashes (/) between the month, day, and year according to the following pattern:

nn/n
nn/nn
nn/nn/n
nn/nn/nn
nnn/nn/nn
nn/nn/nnnn
nnn/nn/nnnn
nnnn/nn/nn
nnnnn/nn/nn

Format used with M, D or blank in position 19
Format used with M, D or blank in position 19
Format used with Y in position 19
Format used with Y in position 19

4 The Z edit code removes the sign (plus or minus) from a numeric field and sup-

presses leading zeros of a numeric field.

5 The b represents a blank. This may occur if a negative zero does not correspond

to a printable character.

Table 40. Effects of Edit Codes on End Position
Negative Number, 2 Decimal Positions. End Position
Specified as 10.
Output Print Positions
Edit Code 3 4 5 6 7 9 10 11
Unedited 0 0 4 1 K1
1 4 1 2
2 4 1 2
3 4 1 2
4 4 1 2
5-92
A 4 1 2 C R
B 4 1 2 C R
C 4 1 2 C R
D 4 1 2 C R
J 4 1 2 -
K 4 1 2 -
L 4 1 2 -
M 4 1 2 -
N - 4 1 2
(0] - 4 1 2
P - 4 1 2
Q - 4 1 2
X 0 0 4 1 K1
Y 0 / 4 / 2
4 4 1 2
1K represents a negative 2.
2These are user-defined edit codes.
Edit Words
If you have editing requirements that cannot be met by using the edit codes
described above, you can use an edit word or named constant. An edit word
allows you to directly specify:
¢ Blank spaces
e Commas and decimal points, and their position
e Suppression of unwanted zeros
e |eading asterisks
Chapter 14. Editing Numeric Fields 409

e The currency symbol, and its position
e Addition of constant characters
e Output of the negative sign, or CR, as a negative indicator.

The edit word is used as a template, which the system applies to the source data
to produce the output.

The edit word may be specified directly on an output specification or may be speci-
fied as a named constant with a named constant name appearing in the edit word
field of the output specification.

Named constants, used as edit words, are limited to 115 characters. See “Named
Constant Specifications” on page 155 for more information on named constant
rules.

How to Code an Edit Word

To use an edit word, code the unshaded portion of the output specifications as
shown below:

or And And

Record Name

O | [spacel skip Output Indicators Commas | Z€ro Balances | N sign | cr

@ to Print x = Remove
= Field Name
8 or Plus Sign | 5.9 =
z EXCPT Name Yes Yes Y = Date User

Filename 2 End Yes No Field Edit | pefined
S
=

7 =zero
Line

J
K
L
M

o0 @ »

1
2
Position No Yes 3
)

Form Type

Suppress
n No No PP

Output
Record

o | m| Before
o —| After

Before
After

Constant or Edit Word
123 456 7 8 91011 12 13 1415 16 17 18 19 20 21 22 23 24
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70(71 72 73 74

]

Not

Not

Not
Edit Codes
B/A/C/1-9/R
P/B/L/R

"AuTO

N[D
7 8 9101112 13(14|15|16|17|18|19 20|21 2223 24| 25|26 [27(28|29|30(31({32 33 34 35 36 37|

w
8
P
8

40 4142 43

=
S

ol ol o] o] o]«
ol o o | =]»

[e]Ne] NelNelNel K

Position Entry

23-31 Can contain conditioning indicators.

32-37 Contains the name of the numeric field from which the data that is to
be edited is taken.

38 Edit code. Must be blank, if you are using an edit word to edit the
source data.

39 A “B” in this position indicates that the source data is to be set to

zero or blanks after it has been edited and output. Otherwise the
source data remains unchanged.
40-43 Identifies the end (rightmost) position of the field in the output record.
45-70 Edit word. Can be up to 24 characters long and must be enclosed by
apostrophes, unless it is a named constant. Enter the leading apos-
trophe, or begin the named constant name in column 45. The edit
word, unless a named constant, must begin in column 46.

Parts of an Edit Word

An edit word (coded into positions 45 to 70 of the output specifications) consists of
three parts: the body, the status, and the expansion. The following shows the three
parts of an edit word:

410 RPG/400 Reference

EDIT WORD

Body Status Expansion

The body is the space for the digits transferred from the source data field to the
output record. The body begins at the leftmost position of the edit word. The
number of blanks (plus one zero or an asterisk) in the edit word body must be
equal to or greater than the number of digits of the source data field to be edited.
The body ends with the rightmost character that can be replaced by a digit.

The status defines a space to allow for a negative indicator, either the two letters CR
or a minus sign (-). The negative indicator specified is output only if the source
data is negative. All characters in the edit word between the last replaceable char-
acter (blank, zero suppression character) and the negative indicator are also output
with the negative indicator only if the source data is negative; if the source data is
positive, these status positions are replaced by blanks. Edit words without the CR
or - indicators have no status positions.

The status must be entered after the last blank in the edit word. If more than one
CR follows the last blank, only the first CR is treated as a status; the remaining CRs
are treated as constants. For the minus sign to be considered as a status, it must
be the last character in the edit word.

The expansion is a series of ampersands and constant characters entered after the
status. Ampersands are replaced by blank spaces in the output; constants are
output as is. If status is not specified, the expansion follows the body.

Forming the Body of an Edit Word
The following characters have special meanings when used in the body of an edit
word:

Blank: s replaced with the character from the corresponding position of the
source data field specified by the field name in positions 32 through 37 of the
output specifications. A blank position is referred to as a digit position.

Decimals and Commas: Decimals and commas are in the same relative position
in the edited output field as they are in the edit word unless they appear to the left
of the first significant digit in the edit word. In that case, they are blanked out or
replaced by an asterisk.

In the following examples below, all the leading zeros will be suppressed (default)
and the decimal point will not print unless there is a significant digit to its left.

Edit Word Source Data Appears in Output Record as:
'"bbbbbbb 0000072 bbbbh72

"bbbbbbb.bb 000000012 bbbbbbbH12

"bbbbbbb.bb' 000000123 bbbbbH1.23

Chapter 14. Editing Numeric Fields 411

Zeros: The first zero in the body of the edit word is interpreted as an end-zero-
suppression character. This zero is placed where zero suppression is to end. Sub-
sequent zeros put into the edit word are treated as constants (see “Constants”
below).

Any leading zeros in the source data are suppressed up to and including the posi-
tion of the end-zero-suppression character. Significant digits that would appear in
the end-zero-suppression character position, or to the left of it, are output.

Edit Word Source Data Appears in Output Record as:

"bbbhObbbbbb ' 00000004 bbbbh000004

"bbbhObbbbbb ' 012345 bbHbh012345

"bbbObbbbbb ' 012345678 Hb12345678
If the leading zeros include, or extend to the right of, the end-zero-suppression
character position, that position is replaced with a blank. This means that if you
wish the same number of leading zeros to appear in the output as exist in the
source data, the edit word body must be wider than the source data.

Edit Word Source Data Appears in Output Record as:

'Obbb! 0156 156

'Obbbb' 0156 H0156
Constants (including commas and decimal point) that are placed to the right of the
end-zero-suppression character are output, even if there is no source data. Con-
stants to the left of the end-zero-suppression character are only output if the source
data has significant digits that would be placed to the left of these constants.

Edit Word Source Data Appears in Output Record as:

"bbbbbb0.bb ' 000000001 bbbbbbb.01

"bbbbbh0.bh! 000000000 bbbbbbb.00

'bbb,b0b.bb' 00000012 bbbbdb0.12

"bbb,b0b.bb 00000123 bbbbbb1.23

'H0b,bbb.bb" 00000123 5b0,001.23
Asterisk: The first asterisk in the body of an edit word also ends zero sup-
pression. Subsequent asterisks put into the edit word are treated as constants (see
“Constants” below). Any zeros in the edit word following this asterisk are also
treated as constants. There can be only one end-zero-suppression character in an
edit word, and that character is the first asterisk or the first zero in the edit word.
If an asterisk is used as an end-zero-suppression character, all leading zeros that
are suppressed are replaced with asterisks in the output. Otherwise, the asterisk
suppresses leading zeros in the same way as described above for “Zeros”.

Edit Word Source Data Appears in Output Record as:

"*phbbbb.bb' 000000123 *Hbhbdb1.23

"bbbbb*b.bb' 000000000 *xxxx%0.00

412 RPG/400 Reference

Edit Word Source Data Appears in Output Record as:
"bbbbb*b.bh**! 000056342 **xx563.42%*
Note that leading zeros appearing after the asterisk position are output as leading
zeros. Only the suppressed leading zeros, including the one in the asterisk position,
are replaced by asterisks.
Currency Symbol: A currency symbol followed directly by a first zero in the edit
word (end-zero-suppression character) is said to float. All leading zeros are sup-
pressed in the output and the currency symbol appears in the output immediately to
the left of the most significant digit.
Edit Word Source Data Appears in Output Record as:
'bb,bbb,b$0.bb " 000000012 bbbbbbbbb$.12
'bb,bbb,b$0.bb " 000123456 bbbb$1,234.56
If the currency symbol is put into the first position of the edit word, then it will
always appear in that position in the output. This is called a fixed currency symbol.
Edit Word Source Data Appears in Output Record as:
'$b,bbb,bb0.bb " 000123456 $bbbbH1,234.56
'$bb,bbb,0b0.bb' 000000000 $bbbbbbbHH00.00
'$b,bbb,*bb.bb ! 000123456 $****1,234.56

A currency symbol anywhere else in the edit word and not immediately followed by
a zero end-suppression-character is treated as a constant (see “Constants” below).

Ampersand: Causes a blank in the edited field. The example below might be
used to edit a telephone number. Note that the zero in the first position is required
to print the constant AREA.

Edit Word

Source Data Appears in Output Record as:

'0AREA&DDBDHE&NO.&bbb-bbbb ' 4165551212 HAREAD416bNO.H555-1212

Constants: All other characters entered into the body of the edit word are treated
as constants. If the source data is such that the output places significant digits or
leading zeros to the left of any constant, then that constant appears in the output.
Otherwise, the constant is suppressed in the output. Commas and the decimal
point follow the same rules as for constants. Notice in the examples below, that
the presence of the end-zero-suppression character as well as the number of signif-
icant digits in the source data, influence the output of constants.

The following edit words could be used to print cheques. Note that the second
asterisk is treated as a constant, and that, in the third example, the constants pre-
ceding the first significant digit are not output.

Edit Word

Source Data Appears in Output Record as:

'$bbbbbb*DOLLARS&DH&CTS! 000012345 $+***123*DOLLARSHA5HCTS

Chapter 14. Editing Numeric Fields 413

Edit Word

Source Data Appears in Output Record as:

'$bbbbbH** DOLLARS&DH&CTS'

000000006 $rrrrxDOLLARSHO6HCTS

' $bbbbbbb&DOLLARS&DH&CTS'

000000006 $bbbbbbbbbbbbbbbbb6bCTS

A date could be printed by using either edit word:

Edit Word Source Data Appears in Output Record as:
"bb/bb/bb! 010388 H1/03/88
'Obb/bb/bb 010389 01/03/89
Note that any zeros or asterisks following the first occurrence of an edit word are
treated as constants. The same is true for - and CR:.
Edit Word Source Data Appears in Output Record as:
'5H0.6bb000" 01234 512.34000
'bb*.HH000" 01234 *12.34000
Forming the Status of an Edit Word
The following characters have special meanings when used in the status of an edit
word:
Ampersand: Causes a blank in the edited output field. An ampersand cannot be
placed in the edited output field.
CR or minus symbol: If the sign in the edited output is plus (+), these positions
are blanked out. If the sign in the edited output field is minus (-), these positions
remain undisturbed.
The following example adds a negative value indication. The minus sign will print
only when the value in the field is negative. A CR symbol fills the same function as
a minus sign.
Edit Word Source Data Appears in Output Record as:
'bbbbbbbd.bb-' 000000123- bbbbbbh1.23-
"bbbbbbb.bb-' 000000123 bbbbbh1.23b
Constants between the last replaceable character and the - or CR symbol will print
only if the field is negative; otherwise, blanks will print in these positions. Note the
use of ampersands to represent blanks:
Edit Word Source Data Appears in Output Record as:
'b,bbb,bb0.6b&30&DAY&CR'' 000000123- bbbbbbbbh1.23H306DAYHCR
'b,bbb,bb0.6b&30&DAY&CR'! 000000123 bbbbbbbbh1.23bbhbbbbbbb

414

RPG/400 Reference

Formatting the Expansion of an Edit Word
The characters in the expansion portion of an edit word are always written. The
expansion cannot contain blanks. If a blank is required in the edited output field,
specify an ampersand in the body of the edit word.

Constants may be added to print on every line:

Edit Word Source Data Appears in Output Record as:
'b,bb0.bb&CR&NET' 000123- bbbb1.23bCRHNET
'b,bb0.bb&CR&NET 000123 bbbb1.23bbbHNET
Note that the CR in the middle of a word may be detected as a negative field value
indication. If a word such as SECRET is required, use the coding in the example
below.
Edit Word Source Data Appears in Output Record as:
'"bb0.bb&SECRET' 12345- 123.456SECRET
'"bb0.0b&SECRET' 12345 123.45bbbbBET
'"pb0.0b&CR&&SECRET! 12345 123.456bbHHSECRET

Summary of Coding Rules for Edit Words

The following rules apply to edit words:

Position 38 (edit codes) must be blank.

Positions 32 through 37 (field name) must contain the name of a numeric field.
An edit word must be enclosed in apostrophes, unless it is a named constant.
Enter the leading apostrophe or begin a named constant name in position 45.
The edit word itself must begin in position 46.

The edit word can contain more digit positions (blanks plus the initial zero or
asterisk) than the field to be edited, but must not contain less. If there are
more digit positions in the edit word than there are digits in the field to be
edited, leading zeros are added to the field before editing.

If leading zeros from the source data are desired, the edit word must contain
one more position than the field to be edited, and a zero must be placed in the
high-order position of the edit word.

In the body of the edit word only blanks and the zero-suppression stop charac-
ters (zero and asterisk) are counted as digit positions. The floating currency
symbol is not counted as a digit position.

When the floating currency symbol is used, the sum of the number of blanks
and the zero-suppression stop character (digit positions) contained in the edit
word must be equal to or greater than the number of positions in the field to be
edited.

Any zeros or asterisks following the leftmost zero or asterisk are treated as
constants; they are not replaceable characters.

Chapter 14. Editing Numeric Fields 415

Formatting Edit Words

If you need to show a negative number, include a sign in the edit word. Use either
the letters CR or the minus sign (-). These print only for a negative number;
however, you must consider the character positions they require when you enter
the end position of the field on the output specifications (see Figure 116).

To use a minus sign to indicate a negative number, leave a space between the
number and the negative sign, and place an ampersand (&) in the edit word before

the minus sign.

PERCPL then prints as 25b-.

If you want to print a currency symbol, you also indicate this in your edit word.
Figure 117 shows examples of printing a currency symbol.

Figure 116. Examples of Edit Words on Output Specifications

P I R T DUV L | S T DUV A s DRP Y A
0 INUMB 7" o'

0 ICOST 18 '$ 0. '

0 SPRICE 27 '$ 6. '

0 PERCPL 37 ' CR'

Editing Externally Described Files

Edit codes must be specified in data description specifications (DDS), instead of the
RPG/400 language, to edit output for externally described files. See the DDS
Reference for information on how to specify edit codes in the data description spec-
ifications. However, if an externally described file, which has an edit code speci-
fied, is to be written out as a program described output file, you must specify
editing in the output specifications. In this case, any edit codes in the data
description specifications are ignored.

LI IS AR UG UM SSTIUPT DUPIPIPE. DU DD SRSPPUPY ¢ DUV DR A
SPRICE 27 '$ 0.
SPRICE 27 '$ =*. H
SPRICE 27 ' $0.

Figure 117. Different Edit Words Used on the Same Field

416 RPG/400 Reference

To print a currency symbol at the left of the field, put the currency symbol
next to the first apostrophe, and then put in the necessary blanks and punctu-
ation. A currency symbol in this position is called a fixed currency symbol.

The SPRICE field can look like any of the following (N stands for any number):

$NNN. NN
$ NN.NN
$ N.NN
$.NN

To avoid blanks between the currency symbol and the first digit when zero
suppression occurs, indicate asterisk (*) fill. Instead of using O to indicate
zero suppression, use the asterisk (*) to indicate that all extra spaces should
be filled with asterisks. The SPRICE field can look like any of the following (N
stands for any number):

$NNN. NN
$*NN.NN
$xN. NN
$xxx NN

To have the currency symbol always print next to the leftmost digit, place the
$ sign next to the zero-suppress 0 in the edit word. A currency symbol that
changes positions depending upon the number of positions that are zero-
suppressed is known as a floating currency symbol. The SPRICE field can
look like any of the following:

$NNN. NN
$NN.NN
$N.NN
$.NN

Chapter 14. Editing Numeric Fields 417

418 RPG/400 Reference

Chapter 15. General File Considerations

This chapter contains a more detailed explanation of:

e Multi-file Processing

e Match fields

e Alternate collating sequence
* File translation.

Primary/Secondary Multi-file Processing

In an RPG/400 program, the processing of a primary input file and one or more
secondary input files, with or without match fields, is termed multi-file processing.
Selection of records from more than one file based on the contents of match fields
is known as multi-file processing by matching records. Multi-file processing can be
used with externally described or program described input files that are designated
as primary/secondary files.

Multi-file Processing with No Match Fields

When no match fields are used in multi-file processing, records are selected from
one file at a time. When the records from one file are all processed, the records
from the next file are selected. The files are selected in this order:

1. Primary file, if specified
2. Secondary files in the order in which they are described on the file description
specifications.

Multi-file Processing with Match Fields

When match fields are used in multi-file processing, the program selects the
records for processing according to the contents of the match fields. At the begin-
ning of the first cycle, the program reads one record from every primary/secondary
input file and compares the match fields in the records. If the records are in
ascending order, the program selects the record with the lowest match field. If the
records are in descending order, the program selects the record with the highest
match field.

When a record is selected from a file, the program reads the next record from that
file. At the beginning of the next program cycle, the new record is compared with
the other records in the read area that are waiting for selection, and one record is
selected for processing.

Records without match fields can also be included in the files. Such records are
selected for processing before records with match fields. If two or more of the
records being compared have no match fields, selection of those records is deter-
mined by the priority of the files from which the records came. The priority of the
files is:

1. Primary file, if specified
2. Secondary files in the order in which they are described on the file description
specifications.

When the primary file record matches one or more of the secondary records, the MR
(matching record) indicator is set on. The MR indicator is on for detail time proc-

© Copyright IBM Corp. 1994 419

420

RPG/400 Reference

essing of a matching record through the total time that follows the record. This
indicator can be used to condition calculation or output operations for the record
that is selected. When one of the matching records must be selected, the selection
is determined by the priority of the files from which the records came.

Figure 5 on page 20 shows the logic flow of multifile processing.

A program can be written where only one input file is defined with match fields and
no other input files have match fields. The files without the match fields are then
processed completely according to the previously mentioned priority of files. The
file with the match fields is processed last, and sequence checking occurs for that
file.

Assigning Match Field Values (M1-M9)
When assigning match field values (M1 through M9) to fields on the input specifica-
tions in positions 61 and 62, consider the following:

» Sequence checking is done for all record types with match field specifications.
All match fields must be in the same order, either all ascending or all
descending. The contents of the fields to which M1 through M9 are assigned are
checked for correct sequence. An error in sequence causes the RPG/400
exception/error handling routine to receive control. When the program con-
tinues processing, the next record from the same file is read.

¢ Not all files used in the program must have match fields. Not all record types
within one file must have match fields either. However, at least one record type
from two files must have match fields if files are ever to be matched.

e The same match field values must be specified for all record types that are
used in matching. See Figure 118 on page 421.

e All match fields with the same match field values (M1 through M9) should be the
same length and type (character or numeric). If the match field contains
packed data, the zoned decimal length (two times packed length - 1) is used as
the length of the match field. It is valid to match a packed field in one record
against a zoned decimal field in another if the digit lengths are identical. The
length must always be odd because the length of a packed field is always odd.

» Record positions of different match fields can overlap, but the total length of all
fields must not exceed 256 characters.

* If more than one match field is specified for a record type, all the fields are
combined and treated as one continuous field (see Figure 118 on page 421).
The fields are combined according to descending sequence (M9 to M1) of
matching field values.

e Match fields values cannot be repeated in a record.

e Match fields can be either character or numeric. However, all match fields
given the same matching field value (M1 through M9) are considered numeric if
any one of the match fields is described as numeric.

* When numeric fields having decimal positions are matched, they are treated as
if they had no decimal position. For instance 3.46 is considered equal to 346.

e Only the digit portions of numeric match fields are compared. Even though a
field is negative, it is considered to be positive because the sign of the numeric
field is ignored. Therefore, a -5 matches a +5.

* Whenever more than one matching field value is used, all match fields must
match before the MR indicator is set on. For example, if match field values M1,
M2, and M3 are specified, all three fields from a primary record must match all
three match fields from a secondary record. A match on only the fields speci-

fied by M1 and M2 fields will not set the MR indicator on (see Figure 118 on
page 421).

Matching fields cannot be used for lookahead fields, and arrays.

Field names are ignored in matching record operations. Therefore, fields from
different record types that are assigned the same match level can have the
same name.

If an alternate collating sequence or a file translation is defined for the program,
character fields are matched according to the alternate sequence specified.

A field specified as binary (B in position 43 of the input specifications) cannot
be assigned a match field value. However, a field specified as packed (P in
position 43 of the input specifications) can be assigned a match field value.
Match fields that have no field record relation indicator must be described
before those that do. When the field record relation indicator is used with
match fields, the field record relation indicator should be the same as a record
identifying indicator for this file, and the match fields must be grouped
according to the field record relation indicator.

When any match value (M1 through M9) is specified for a field without a field
record relation indicator, all match values used must be specified once without
a field record relation indicator. If all match fields are not common to all
records, a dummy match field should be used. Field record relation indicators
are invalid for externally described files. (see Figure 119 on page 423).
Match fields are independent of control level indicators (L1 through L9).

If multi-file processing is specified and the LR indicator is set on, the program
bypasses the multi-file processing routine.

Figure 121 on page 424 is an example of how match fields are specified.

I [- S FUPIDE A SUPE ST DU AP - DRPRPIPE R A
FFilenameIPEAF....R1enLKIAIOvKlocEDevice+......KExit++Entry+A....U

FMASTER IP E
FWEEKLY IS E

K DISK
K DISK

The files in this example are externally described (E in position 19) and are to be processed by keys (K in

position 31).

Figure 118 (Part 1 of 2). Match Fields in Which All Values Match

Chapter 15. General File Considerations 421

T TS N

I*
IRcdname+. ...
IEMPMAS
I

I

I
IDEPTMS
I

I

I

I*
IWEEKRC
I

I

I

In
01

03

P R IR T JUPUP . DUPRPR P ¢ JAPUPIPR R AN
MASTER FILE
................................ Field+LIMl...........
EMPLNO M1
DIVSON M3
DEPT M2
EMPLNO M1
DEPT M2
DIVSON M3
WEEKLY FILE
EMPLNO M1
DIVSON M3
DEPT M2

Figure 118 (Part 2 of 2). Match Fields in Which All Values Match

Three files are used in matching records. All the files have three match fields spec-
ified, and all use the same values (M1, M2, M3) to indicate which fields must match.
The MR indicator is set on only if all three match fields in either of the files EMPMAS
and DEPTMS are the same as all three fields from the WEEKRC file.

The three match fields in each file are combined and treated as one match field
organized in the following descending sequence:

DIVSON M3
DEPT M2
EMPLNO M1

The order in which the match fields are specified in the input specifications does
not affect the organization of the match fields.

422 RPG/400 Reference

*

R R TN, . PUPIE Y S T DU R
IFilTenameSgNORiPos1INCCPos2NCCPos3NCC

IDISK AB 01 1C1

I

I
I
I
I
I

OR 02 1 C2

OR 03 1¢C3
1 100EMPNO
11 150DUMMY
11 150DEPT
16 200DEPT

Figure 119. Match Fields with Dummy Match Field

m=
==
o
=
o

’ Record Identifying Indicator 01
4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22

—_
N
w

M1 M2
EMPNO DEPT

|

B T Y S
.PFromTo++DField+L1IM1FrP1MnZr...

M1
M2
M202
M203

Record Identifying Indicator 02

—_
nN
w

4 5 6 7 8 9101112 13 14 1516 17 18 19 20 21 22
M1 M2
EMPNO DEPT

Record Identifying Indicator 03

1 2 3 45 6 7 8 9101112 13 14 15 16 17 18 19 20 21 22

Figure 120. Match Fields with a Dummy M2 Field

Three different record types are found in the input file. All three contain a match
field in positions 1 through 10. Two of them have a second match field. Because
M1 is found on all record types, it can be specified without an entry in positions 63
and 64. If one match value (M1 through M9) is specified without field record relation
entries, all match values must be specified once without field record relation entries.

Because the value M1 is specified without field record relationship, an M2 value

must also be specified once without field record relationship. The M2 field is not on
all record types; therefore a dummy M2 field must be specified next. The dummy
field can be given any unique name, but its specified length must be equal to the
length of the true M2 field. The M2 field is then related to the record types on which

it is found by field record relation entries.

Chapter 15. General File Considerations

423

* .

P I S
FFilenameIPEAF..

FPRIMARY IPEAF
FFIRSTSECIS AF
FSECSEC IS AF

*..

I P .
IFilenameSgNORi1Pos1INCCPos2NCCPos3NCC.PFromTo++DField+L1M1

IPRIMARY AA 01

I
I*
I
I
I*

IFIRSTSECAB

I
I*
I
I
I*

ISECSEC AC

I
I*
I
I

02

03

BC

04

05

BD 06

I . DU Y DA . DUDIIPE, DU - DUVEPIPE U AP
. .RTenLK1AIOvKTocEDevice+...... KExit++Entry+A....Ul.
64 DISK
64 DISK
64 DISK
I . DA R DU . DU DUPRP DUV PP AV

1 CP 2NC

2 3 MATCH M1
1¢Cp 2¢C

2 3 NOM
1 CS 2NC

2 3 MATCH M1
1CS 2¢C

2 3 NOM
1 CT 2NC

2 3 MATCH M1
1C¢tr 2¢C

2 3 NOM

Figure 121. Match Field Specifications for Three Disk Files

424

RPG/400 Reference

Processing Matching Records
Matching records for two or more files are processed in the following manner:

¢ Whenever a record from the primary file matches a record from the secondary
file, the primary file is processed first. Then the matching secondary file is proc-
essed. The record identifying indicator that identifies the record type just
selected is on at the time the record is processed. This indicator is often used
to control the type of processing that takes place.

* Whenever records from ascending files do not match, the record having the
lowest match field content is processed first. Whenever records from
descending files do not match, the record having the highest match field
content is processed first.

* A record type that has no match field specification is processed immediately
after the record it follows. The MR indicator is off. If this record type is first in
the file, it is processed first even if it is not in the primary file.

¢ The matching of records makes it possible to enter data from primary records
into their matching secondary records because the primary record is processed
before the matching secondary record. However, the transfer of data from sec-
ondary records to matching primary records can be done only when look-ahead
fields are specified.

Figure 122 through Figure 123 show how records from three files are selected for

Primary File

First Secondary File

Second Secondary File

processing.
P|P|P|P|P|P|P]|P]|P
20| 20| 40| 50 60| 80
1 2 5 6 11 12 13 17 22
No Match Field
S|IS|S|S|S|S|S|S]|S
20| 30| 30| 60 70| 80| 80
3 7 8 9 18 19 21 23 24
Match Field
T|T|T|T|T|T|T|T
10| 30| 50| 50 60| 80| 80
4 10 14 15 16 20 25 26

The records from the three disk files above are selected in the
order indicated by the dark numbers.

Figure 122. Normal Record Selection from Three Disk Files

Table 41 (Page 1 of 2). Normal Record Selection from Three Disk Files

Cycle File Processed Indicators On Reason for Setting Indicator

1 PRIMARY 02 No match field specified

2 PRIMARY 02 No match field specified

3 FIRSTSEC 04 No match field specified

4 SECSEC 05 Second secondary low; no primary match
5 PRIMARY 01, MR Primary matches first secondary

6 PRIMARY 01, MR Primary matches first secondary

7 FIRSTSEC 03, MR First secondary matches primary

8 FIRSTSEC 03 First secondary low; no primary match
9 FIRSTSEC 03 First secondary low; no primary match
10 SECSEC 05 Second secondary low; no primary match
11 PRIMARY 01 Primary low; no secondary match

12 PRIMARY 01, MR Primary matches second secondary
13 PRIMARY 02 No match field specified

14 SECSEC 05, MR Second secondary matches primary
15 SECSEC 05, MR Second secondary matches primary
16 SECSEC 06 No match field specified

17 PRIMARY 01, MR Primary matches both secondary files
18 FIRSTSEC 03, MR First secondary matches primary

19 FIRSTSEC 04 No match field specified

20 SECSEC 05, MR Second secondary matches primary

Chapter 15. General File Considerations

425

Table 41 (Page 2 of 2). Normal Record Selection from Three Disk Files

Cycle File Processed Indicators On Reason for Setting Indicator

21 FIRSTSEC 03 First secondary low; no primary match
22 PRIMARY 01, MR Primary matches both secondary files
23 FIRSTSEC 03, MR First secondary matches primary

24 FIRSTSEC 03, MR First secondary matches primary

25 SECSEC 05, MR Second secondary matches primary
26 SECSEC 05, MR Second secondary matches primary

426

RPG/400 Reference

STEP 1

The first record from each file
is read. The P and S records
have no match field, so they are
processed before the T record
that has a match field. Because
the P record comes from the
primary file, it is selected for
processing first.

STEP 2

The next P record is read. It
contains no match field and comes
from the primary file, so the new
P record is also selected for
processing before the S record.

STEP 3

P 20

The next P record has a match
field. The S record has no match
field, so it is selected for
processing.

STEP 4

P 20

S 20

The next S record is read. ATl
three records have match fields.
Because the value in the match
field of the T record is lower
than the value in the other two,
the T record is selected for pro-
cessing.

STEP 5

P 20

S 20

T 30

The next T record is read. The
matching P and S records both
have the Tow match field value,
so they are processed before the
T record. Because the matching

P record comes from the primary
file, it is selected for process-
ing first.

Figure 123 (Part 1 of 2). Normal Record Selection from Three Disk Files

STEP 6
l The next P record is read.
Because it contains the same
match field and comes from the

P 20 S 20 T 30 primary file, the new P record
is selected instead of the
S record.
STEP 7

The next P record is read. The
value of the match field in the

S record is the lowest of the

P 40 S 20 T 30 three, so the S record is select-
ed for processing.

STEP 8 The next S record is read.
Because the S and T records have
the lowest match field, they are
selected before the P record.

P 40 S 30 T 30 Because the S record comes from
the first secondary file, it is
selected for processing before
the T record.

STEP 9

The next S record is read.
Because it also has the same
match field as the S record just
P 40 S 30 T 30 selected, it too is selected
before the T record.

STEP 10
l The next S record is read. The
T record contains the Towest
P 40 S 60 T 30 match field value, and is select-

ed for processing.

Figure 123 (Part 2 of 2). Normal Record Selection from Three Disk Files

Alternate Collating Sequence

Each character is represented internally by a hexadecimal value, which governs the
order (ascending or descending sequence) of the characters and is known as the
normal collating sequence. The alternate collating sequence function can be used
to alter the normal collating sequence. This function also can be used to allow two
or more characters to be considered equal.

Chapter 15. General File Considerations 427

Formatting the Alternate Collating Sequence Records

Changing the Collating Sequence

Using an alternate collating sequence means modifying the collating sequence for
character match fields (file selection) and character compares. The calculation
operations affected by the alternate collating sequence are ANDxx, COMP, CABxx,
CASxx, DOUxx, DOWxx, IFxx, ORxx, and WHxx. The characters are not permanently
changed by the alternate collating sequence, but are temporarily altered until the
matching field or character compare operation is completed.

Changing the collating sequence does not affect the LOKUP and SORTA operations or
the hexadecimal values assigned to the figurative constants *HIVAL and *LOVAL.
However, changing the collating sequence can affect the order of the values of
*HIVAL and *LOVAL in the collating sequence. Therefore, if you specify an alternate
collating sequence in your program and thereby cause a change in the order of the
values of *HIVAL and *LOVAL, undesirable results may occur.

Specifying an Alternate Collating Sequence

To specify that an alternate collating sequence is to be used, enter an S in position
26 in the control specification. Transcribe the sequence changes into the correct
record format for entry into the system. These records, called the alternate col-
lating sequence table records, must be entered after the RPG/400 specifications
and, if used, after the file translation table records. However, the alternate collating
sequence table records must be entered before arrays and tables loaded at
compile time.

If a character is to be inserted between two consecutive characters, you must
specify every character that is altered by this insertion. For example, if the dollar
sign (9$) is to be inserted between A and B, specify the changes for character B
onward.

See Appendix B, “EBCDIC Collating Sequence” on page 441 for the EBCDIC char-
acter set.

Formatting the Alternate Collating Sequence Records

428

The changes to the collating sequence must be transcribed into the correct record
format so that they can be entered into the system. The alternate collating
sequence must be formatted as follows:

Record

Position Entry

1-6 ALTSEQ (This indicates to the system that the normal sequence is
being altered.)

7-8 Leave these positions blank.

9-10 Enter the hexadecimal value for the character whose normal
sequence is being changed.

11-12 Enter the hexadecimal value of the character replacing the char-
acter whose normal sequence is being changed.

13-16 All groups of four beginning with position 13 are used in the same

17-20 manner as positions 9 through 12. In the first two positions of a

21-24 group enter the hexadecimal value of the character to be replaced.

In the last two positions enter the hexadecimal value of the char-

77-80 acter that replaces it.

RPG/400 Reference

Formatting the Alternate Collating Sequence Records

The records that describe the alternate collating sequence must be preceded by a
record with ** (b = blank) in positions 1 through 3. The remaining positions in this
record can be used for comments.

File Translation

The file translation function translates any of the 8-bit codes used for characters
into another 8-bit code. The use of file translation indicates one or both of the
following:

e A character code used in the input data must be translated into the system
code.

e The output data must be translated from the system code into a different code.
The translation on input or output data occurs after any editing or field selection
has taken place.

If file translation is used to translate data in an update file, each record must be
written before the next record is read.

Remember the following when specifying file translation:

» File translation can be specified for data in array or table files (T in position 16
of the file description specifications).

¢ File translation can be used with data in combined, input, or update files that
are translated at input and output time according to the file translation table
provided. If file translation is used to translate data in an update file, each
record must be written before the next record is read.

e For any I/O operation that specifies a search argument in factor 1 (such as
CHAIN, READE, REDPE, SETGT, or SETLL) for files accessed by keys, the search
argument is translated before the file is accessed.

« |f file translation is specified for both a record address file and the file being
processed (if the file being processed is processed sequentially within limits),
the records in the record address file are first translated according to the file
translation specified for that file, and then the records in the file being proc-
essed are translated according to the file translation specified for that file.

¢ File translation applies only on a single byte basis.

Specifying File Translation

To specify file translation, enter an F in position 43 of the control specification. The
translations must be transcribed into the correct record format for entry into the
system. These records, called the file translation table records, must precede any
alternate collating sequence records, or arrays and tables loaded at compile time.
They must be preceded by a record with **b (b = blank) in positions 1 through 3.
The remaining positions in this record can be used for comments.

Chapter 15. General File Considerations 429

Formatting the Alternate Collating Sequence Records

Translating One File or All Files

File translation table records must be formatted as follows:

Record

Position Entry

1-8 (to Enter *FILESHbb (b represents a blank) to indicate that all files are to

translate be translated. Complete the file translation table record beginning

all files) with positions 9 and 10. If *FILESbb is specified, no other file trans-
lation table can be specified in the program.

1-8 (to Enter the name of the file to be translated. Complete the file trans-

translate a lation table record beginning with positions 9 and 10. The *FILESHb

specific file) entry is not made in positions 1 through 8 when a specific file is to
be translated.

9-10 Enter the hexadecimal value of the character to be translated from
on input or to be translated to on output.

11-12 Enter the hexadecimal equivalent of the internal character the
RPG/400 language works with. It will replace the character in posi-
tions 9 and 10 on input and be replaced by the character in posi-
tions 9 and 10 on output.

13-16 All groups of four beginning with position 13 are used in the same
17-20 manner as positions 9 through 12. In the first two positions of a
21-24 group, enter the hexadecimal value of the character to be replaced.
In the last two positions, enter the hexadecimal value of the char-
77-80 acter that replaces it.

The first blank entry ends the record. There can be one or more records per file
translation table. When multiple records are required in order to define the table,
the same file name must be entered on all records. A change in file name is used
to separate multiple translation tables. An *FILES record causes all files, including
tables and arrays specified by a T in position 16 of the file description specifica-
tions, to be translated by the same table.

Translating More Than One File

430

If the same file translation table is needed for more than one file but not for all files,
two types of records must be specified. The first record type specifies the file using
the tables, and the second record type specifies the table. More than one record
for each of these record types can be specified. A change in file names is used to
separate multiple translation tables.

Specifying the Files
File translation table records must be formatted as follows:

Record

Position Entry

1-7 *EQUATE

8 Leave this position blank.

9-80 Enter the name(s) of file(s) to be translated. If more than
one file is to be translated, the file names must be separated
by commas.

RPG/400 Reference

Formatting the Alternate Collating Sequence Records

Additional file names are associated with the table until a file name not followed by
a comma is encountered. A file name cannot be split between two records; a
comma following a file name must be on the same record as the file name. You
can create only one file translation table by using *EQUATE.

Specifying the Table
File translation table records must be formatted as follows:

Record

Position Entry

1-7 *EQUATE

8 Leave this position blank.

9-10 Enter the hexadecimal value of the character to be translated
from on input or to be translated to on output.

11-12 Enter the hexadecimal equivalent of the internal character the
RPG/400 language works with. It will replace the character in
positions 9 and 10 on input and be replaced by the character
in positions 9 and 10 on output.

13-16 All groups of four beginning with position 13 are used the

17-20 same way as positions 9 through 12. In the first two posi-

21-24 tions of a group, enter the hexadecimal value of the character

to be replaced. In the last two positions, enter the

77-80 hexadecimal value of the character that replaces it.

The first blank record position ends the record. If the number of entries exceeds 80
positions, duplicate positions 1 through 8 on the next record and continue as before
with the translation pairs in positions 9 through 80. All table records for one file
must be kept together.

The records that describe the file translation tables must be preceded by a record
with **b (b = blank) in positions 1 through 3. The remaining positions in this record
can be used for comments.

Special File

SPECIAL in positions 40 through 46 of the file description specifications allows you
to specify an input and/or output device that is not directly supported by the
RPG/400 language. The input and output operations for the file are controlled by a
user-written routine. Positions 54 through 59 of the file description specifications
line that contains SPECIAL in positions 40 through 46 must contain the name of the
user-written routine. This user-written routine is called to open the file, read and
write the records, and close the file. A parameter list is created for use by the
user-written routine. The parameter list contains an option code parameter (option),
a return status parameter (status), an error-found parameter (error), and a record
area parameter (area). This parameter list is accessed by the RPG/400 compiler
and by the user-written routine; it cannot be accessed by the RPG/400 program that
contains the SPECIAL file.

The following describes the parameters in this RPG/400-created parameter list:

Option The option parameter is a 1-position character field that indicates the
action the user-written routine is to process. Depending on the opera-
tion being processed on the SPECIAL file (OPEN, CLOSE, READ, WRITE,

Chapter 15. General File Considerations 431

Formatting the Alternate Collating Sequence Records

432

RPG/400 Reference

Status

Error

Area

DELET, UPDAT), one of the following values is passed to the user-written
routine:

Value

Passed Description

(0] Open the file.

C Close the file.

R Read a record and place it in the area defined by the area
parameter.

W A record has been placed in the area defined by the area
parameter; it is to be written out.

D Delete the record.

U The record is an update of the last record read.

The status parameter is a 1-position character field that indicates the
status of the user-written routine when control is returned to the
RPG/400program. Status must contain one of the following return values
when the user-written routine returns control to the RPG/400 program:
Return

Value Description

0 Normal return. The requested action was processed.

1 The input file is at end of file, and no record has been
returned. If the file is an output file, this return value is an
error.

2 The requested action was not processed; error condition
exists.

The error parameter is a 5-digit zoned numeric field with zero decimal
positions. If the user-written routine detects an error, the error param-
eter contains an indication or value representing the type of error. The
value is placed in the first five positions of location *RECORD in the file
information data structure (INFDS) when the status parameter contains
2.

The area parameter is a character field whose length is equal to the
record length associated with the SPECIAL file. This field is used to pass
the record to or receive the record from the RPG/400 program.

You can add additional parameters to the RPG/400-created parameter list. To do
this, specify PLIST in positions 54 through 59 and the name of the PLIST in posi-
tions 60 through 65 of a file description specifications continuation line for the
SPECIAL file (see Figure 124 on page 433). Then use the PLIST operation in the
calculation specifications to define the additional parameters.

L3N R A DU DU ST DU O DU SPU : DUPPE. U AN
FFilenameIPEAF....R1enLK1AIOvKlocEDevice+...... KExit++Entry+A....U
F=

Fx The file EXCPTN is assigned to the device SPECIAL. The I/0

Fx operations from the SPECIAL device are controlled by the user

Fx written routine USERIO.

FEXCPTN I F SPECIAL USERIO

F KPLIST SPCL

LI IR AR ETITITE: PUPIPITE. UDRPRP' SUURPR. PR JUPIPUPE. RPN ¢ DUPUPRP PPNy AN
CLONOINO2NO3Factorl+++0OpcdeFactor2+++ResultLenDHHiLoEqComments++++++
Cx*

C* The parameters specified for the programmer-defined PLIST SPCL

C* are added to the end of the RPG/400-created parameter Tist for the
Cx SPECIAL device. The programmer-specified parameters can be

C* accessed by the user RPG/400 program and the user-written routine;
C* whereas the RPG/400-created parameter 1ist can be accessed only by
C* internal RPG/400 logic and the user-written routine.

c SPCL PLIST

C PARM FLD1
C PARM FLD2
C PARM FLD3

Figure 124. SPECIAL Device

The user-written routine, the name of which is specified in positions 54 through 59
of the file description specifications for the SPECIAL file, must contain an entry
parameter list that includes both the RPG/400 compiler-created parameters and the
user-specified parameters.

If the SPECIAL file is specified as a primary file, the user-specified parameters may
need to be initialized before the first primary read. This can be done with a factor 2
entry on the PARM statements or by the specification of a compile-time array or an
array element as a parameter.

Table 42. Valid File Operations for a SPECIAL File
File Description Specifications Posi- Calculation Specifications Positions
tions
15 16 28-32
I P/S CLOSE, FEOD
C P/S WRITE, CLOSE, FEOD
U P/S UPDAT, DELET, CLOSE, FEOD
0 WRITE, OPEN, CLOSE, FEOD
I F READ, WRITE, OPEN, CLOSE, FEOD
C F READ, WRITE, OPEN, CLOSE, FEOD
U F READ, UPDAT, DELET, OPEN, CLOSE, FEOD

Chapter 15. General File Considerations 433

434 RPG/400 Reference

DBCS Data

Chapter 16. Using Double-Byte Character Set (DBCS) Data in
RPG/400 Programs

This chapter describes enhancements to the RPG/400 programming language which
are useful for handling DBCS data. It describes where to use DBCS data in an
RPG/400 program, and considerations for working with DBCS data in the RPG/400
language.

Where You Can Use DBCS Data in RPG/400 Programs
In an RPG/400 program, you can use DBCS data:

e In any comment statement (a statement with an asterisk in position 7)
* In the comment field of the extension specification (positions 58-74)

¢ In the comment field of the calculation specification (positions 60-74)
 In literals and constants (including named constants)

* As data in any character field, subfield, array, or table.

You may mix DBCS data with alphanumeric data. The RPG/400 language treats
DBCS data in the same way as Single Byte Character Set (SBCS) data.

The RPG/400 language uses the value 10 in the *0UT field in the file information
data structure (INFDS) to indicate that the national language output capability of the
device makes it possible for you to use DBCS data with it.

How to Work with DBCS Literals in RPG/400 Programs

Transparent Literals and Constants
A constant or literal is transparent if the constant or literal:

e Begins with an apostrophe followed by a shift-out character.

e Ends with a shift-in character followed by an apostrophe.

e Contains no embedded shift control characters.

¢ Contains only DBCS data.

e If you are specifying a transparent constant using hexadecimal literals, you
must specify the shift-out and shift-in characters in hexadecimal.

The following is an example of a DBCS named constant. The constant is continued
by placing a hyphen instead of an apostrophe at the end of each continued line.
When concatenated, the internal SO/SI characters will be dropped and only the
starting SO and ending Sl will remain. For more information on named constants
see “Named Constant Specifications” on page 155.

I R . . T T DO . PR R P Y A

| Namedconstant+++++++++C......... Fldnme.............
I 'oK1K2K31 - C DOUBLE
I 'oK4K51i'

Using DBCS data in a constant or literal that is not transparent may produce
unwanted results. The DBCS data may include a character representing an apos-

© Copyright IBM Corp. 1994 435

DBCS Data

trophe. This character ends your constant or literal where you did not expect it to
end. With a transparent constant or literal, the RPG/400 language ensures this
result does not occur.

If you specify 1 in position 57 of the control specification, transparent literals and
constants are scanned. Your literal or constant is checked to be transparent, when
an apostrophe followed by a shift-out character is found. If it is not, a warning
message is issued on the compiler listing. The literal or constant is then treated as
a literal or constant that is not transparent.

Note: If you specify the shift-out and shift-in characters in a hexadecimal literal, it
will not be considered a transparent literal, and will not be checked if you specify a
1 in column 57 of the control specification.

All RPG/400 restrictions on the length of constants or literals apply to transparent
constants and literals, including the apostrophes and control characters.

You may use transparent constants and literals in any of the places you use con-
stants or literals:

e In factor 1 and factor 2 of the calculation specifications. However, it may not
be meaningful to use DBCS data in all of these places. For example, a move
zone operation with a transparent literal in factor 2 will move only the zone of
the shift control character. See the description of each operation code in
Chapter 11, “Operation Codes” on page 185 to decide if it is appropriate to
use a transparent literal.

e As a constant in the constant or edit word field (positions 45-70) of the output
specifications.

Additional Considerations for Using DBCS Data

Fields with DBCS data from externally defined files are defined by the RPG/400 lan-
guage as character fields. These fields are treated in the same manner as other
character fields. However, on the cross-reference listing, the DBCS fields are indi-
cated by IGC in the key field section, or by G in the field section.

Example of Coding DBCS Data in an RPG/400 Program

436

RPG/400 Reference

Here are some RPG/400 specifications that include DBCS data.

In this figure, 'Kn' represents a DBCS character, 'o' represents shift-out character,
and 'i' represents a shift-in character.

This is an EBCDIC example.

You may check transparent literals and constants by specifying a 1 in column 57 of
the control specification.

DBCS Data

LI IS AR SO UM SSPIPIT DUPIPIE. PP AP SRPIPUP : DUPIE. AR AP
E*
E+x0K1K2K3K41ABoK1K2K3K41iCDEFGHOK1K2K3K4K5K6K7K8K91

£ IR A~ IPNPNE SADADRTNG DAPIRTE JRVIDNY' SN PRI SADNNINE DARPII o WADRPRPE SR A
E....FromfileTofile++Name++N/rN/tbLenPDSArrnamLenPDSComments

E ARR 4 50 oK1K2i ARRoK1li
Ex*

DBCS data may be mixed with alphanumeric data in comments.

I IR RN PG IR PUY DU AP, T ST IR Y
CL0N01N02N03Factor1+++0pcdeFactor2+++Resu1tLenDHH1LoEqumments++++++
c 'oK1K2K31i'COMP FLDA 161718

c MOVE 'oK1K2K3i'FLDB

C LABELA TAG 'oK1K2K3K41i'
C=*

Transparent constants and literals are DBCS data enclosed in apostrophes.

L . - U FUPIPIDE. A S T DU AP - DRPRPAPE AR A
0Name++++DFBASbSaN01N02N03F1e]d+YBEnd+PConstant/ed1tword+++++++++

0 7 'oK1K2i'

0 48 'oK1K2K3K4K5K6K7i'

0 FLDC 57 '$ 0. oK1K2K3i'

You may use DBCS constants in your output specifications.

Error status code 450 will be returned if shift-out and shift-in characters are not
properly used.

Here are some sample entries from a compile listing. FLDK1 is a DBCS field in an
externally described file.

PHYSICAL LOGICAL

FILE/RCD FIELD FIELD ATTRIBUTES
FLDK1 IGC 6
AFLD CHAR 3

Figure 125. Sample Key Field Information

Chapter 16. Using Double-Byte Character Set (DBCS) Data in RPG/400 Programs 437

DBCS Data

FIELD ATTR REFERENCE (M=MODIFIED D=DEFINED)
FLDK1 G(6) 1000010D
AFLD A(2) 1000004D

Figure 126. Sample Cross-Reference Listing

438 RPG/400 Reference

Appendix A. RPG/400 Restrictions

Table 43. RPG/400 Restrictions

Function

Restriction

AN/OR lines (positions 7 and 8 of calculation specifica-
tions)

Maximum of 7 per operation.

Arrays and tables

Maximum of 200 per program.

Array/table input record length for compile time

Maximum length is 80.

Character field length

Maximum length is 256.

Control fields (position 59 and 60 of input specifica-
tions) length

Maximum length is 256.

Data structure length

Maximum of 9999.

Data structure occurrences (number of)

Maximum of 9999 per data structure.

Edit Word

Maximum length of 24 for literals or 115 for named
constants.

Elements in an array/table (positions 36 through 39 of
extension specifications)

Maximum of 9999 per array/table.

File

Maximum of 50 per program.

Levels of nesting in structured groups

Maximum of 100.

Look-ahead

Can be specified only once for a file. Can be specified
only for primary and secondary files.

Named Constant

Maximum length of 256 for character named constant,
512 for hexadecimal named constant, and 30 digits
with 9 decimal positions for numeric named constant.

Overflow indicator

Only 1 unique overflow indicator can be specified per
printer file.

Parameters

Maximum of 255

Primary file (P in position 16 of file description specifi-
cations)

Maximum of 1 per program.

Printer file (PRINTER in positions 40 through 46 of file
description specifications)

Maximum of 8 per program.

Printing lines per page

Minimum of 2; maximum of 112.

Program status data structure

Only 1 allowed per program.

Record address file (R in position 16 of file description
specifications)

Only 1 allowed per program.

Record length for program described file (positions 24
through 27 of file description specifications)

Maximum length is 9999. 1

Structured groups (see levels of nesting)

Subroutines

Maximum of 254 per program.

Tables (see arrays)

1Any device record size restraints override this value.

© Copyright IBM Corp. 1994

439

440 RPG/400 Reference

Appendix B. EBCDIC Collating Sequence

EBCDIC

EBCDIC Collating Sequence

Table 44 (Page 1 of 4). EBCDIC Collating Sequence

© Copyright IBM Corp. 1994

Decimal Hex
Ordinal Represen- Represen-
Number Symbol Meaning tation tation
65 b Space 64 40
75 ¢ Cent sign 74 4A
76 Period, decimal point 75 4B
77 < Less than sign 76 4C
78 (Left parenthesis 77 4D
79 + Plus sign 78 4E
80 [Vertical bar, Logical OR 79 4F
81 & Ampersand 80 50
91 ! Exclamation point 90 5A
92 $ Dollar sign 91 5B
93 * Asterisk 92 5C
94) Right parenthesis 93 5D
95 Semicolon 94 5E
96 - Logical NOT 95 5F
97 - Minus, hyphen 96 60
98 / Slash 97 61
107 ! Split vertical bar 106 6A
108 , Comma 107 6B
109 % Percent sign 108 6C
110 Underscore 109 6D
111 > Greater than sign 110 6E
112 ? Question mark 111 6F

441

EBCDIC

442

Table 44 (Page 2 of 4). EBCDIC Collating Sequence

RPG/400 Reference

Decimal Hex
Ordinal Represen- Represen-
Number Symbol Meaning tation tation

122 N Accent grave 121 79
123 Colon 122 A
124 # Number sign, pound sign 123 7B
125 At sign 124 7C
126 Apostrophe, prime sign 125 7D
127 = Equal sign 126 7E
128 " Quotation marks 127 TF
130 a 129 81
131 b 130 82
132 c 131 83
133 d 132 84
134 e 133 85
135 f 134 86
136 g 135 87
137 h 136 88
138 i 137 89
146 j 145 91
147 k 146 92
148 I 147 93
149 m 148 94
150 n 149 95
151 o] 150 96
152 p 151 97
153 q 152 98
154 r 153 99
162 - Tilde 161 Al
163 s 162 A2
164 t 163 A3
165 u 164 A4
166 v 165 A5

EBCDIC

Table 44 (Page 3 of 4). EBCDIC Collating Sequence

Decimal Hex
Ordinal Represen- Represen-
Number Symbol Meaning tation tation

167 w 166 A6
168 X 167 A7
169 y 168 A8
170 z 169 A9
193 { Left brace 192 co
194 A 193 C1
195 B 194 C2
196 C 195 C3
197 D 196 C4
198 E 197 C5
199 F 198 C6
200 G 199 c7
201 H 200 C8
202 I 201 C9
209 } Right brace 208 DO
210 J 209 D1
211 K 210 D2
212 L 211 D3
213 M 212 D4
214 N 213 D5
215 (0] 214 D6
216 P 215 D7
217 Q 216 D8
218 R 217 D9
225 \ Left slash 224 EO
227 226 E2
228 227 E3

Appendix B. EBCDIC Collating Sequence 443

EBCDIC

444

Table 44 (Page 4 of 4). EBCDIC Collating Sequence

Decimal Hex
Ordinal Represen- Represen-
Number Symbol Meaning tation tation
229 U 228 E4
230 229 E5
231 W 230 E6
232 X 231 E7
233 Y 232 E8
234 z 233 E9
241 0 240 FO
242 1 241 F1
243 2 242 F2
244 3 243 F3
245 4 244 F4
246 5 245 F5
247 6 246 F6
248 7 247 F7
249 8 248 F8
250 9 249 F9

RPG/400 Reference

Bibliography

e Publications Guide, GC41-9678, GC41-9678 e Programming: GDDM Programming Guide,
Short Name: Publications Guide SC41-0536, SC41-0536

« Data Management Guide, SC41-9658, SC41-9658 Sgggh’\'/lame: Graphical Data Display Manager
Short Name: Data Management Guide ()
e Programming: System/38 Environment

e Data Description Specifications Reference, .
P P Programmer’s Guide and Reference, SC41-9755,

S5C41-9620, SC41-9620

SC41-9755
Short Name: DDS Reference .
Short Name: System/38 Environment
¢ Distributed Data Management Guide, SC41-9600, Programmer’s Guide/Reference

SC41-9600
Short Name: DDM Guide

e Database Guide, SC41-9659, SC41-9659
Short Name: Database Guide

e System Operation, SC41-3203
Short Name: System Operation

e Systems Application Architecture* Structured Query
Language/400 Reference, SC41-9608, SC41-9608

e Communications: Intersystem Communications Short Name: Programming: Structured Query Lan-
Function Programmer’s Guide, SC41-9590, guage Reference
SC41-9590

e languages: RPG Reference Summary, SX09-1164
Short Name: RPG Reference Summary

e RPG Debugging Template, GX21-9129
Short Name: RPG Debugging Template

e RPG/400 User’s Guide, SC09-1816
Short Name: RPG/400 User’s Guide

Short Name: ICF Programmer’s Guide

e Programming: GDDM Programming Reference,
SC41-0537, SC41-0537
Short Name: GDDM Programming Reference

© Copyright IBM Corp. 1994 445

446 RPG/400 Reference

Index

Special Characters
/COPY statement 3
/EJECT 3
/ISPACE 3
ITITLE 2
.MULT (multiply) operation code 306
$ (fixed or floating currency symbol)
in body of edit word 413
use in edit word 413
with combination edit codes 403
* (asterisk)
in body of edit word 412
with combination edit codes 403
** (double asterisk)
alternate collating sequence table 428
arrays and tables 391
file translation table 429
for program described files 140
lookahead fields 140, 141
*ALL 182
*ALL'x.." 384
*ALLX'x1.." 384
*BLANK/*BLANKS 384
*CANCL 15, 38
*DATE 382
*DAY 382
*DETL
file exception/error subroutine (INFSR) 38
file information data structure (INFDS) 27
flowchart 14
program exception/errors 42
*ENTRY PLIST 320
*EQUATE 430
*EXT 253
*FILE 27
*FILEbD 430
*GETIN
file exception/error subroutine (INFSR) 38
file information data structure (INFDS) 27
flowchart 14
program exception/errors 42
*HIVAL 384
*IN 75
*IN, XX 75
*INIT 27, 42
*INP 27
*INxx 75
*INZSR 19
See also initialization subroutine (*INZSR)
*LDA 240

© Copyright IBM Corp. 1994

*LIKE DEFN 239
*LOVAL 384
*M 253
*MODE 27
*MONTH 382
*NAMVAR DEFN 239
*NOIND 112
*NOKEY (with CLEAR operation) 231
*NOKEY (with RESET operation) 335
*ON/*OFF 384
*OPCODE 27
*OUT 27
*PARMS 42
*PDA 240
*PLACE 177
*PROGRAM 42
*PSSR 45
*RECORD 27
*ROUTINE 27
*SIZE 27
*STATUS 27
*TERM 27, 42
*YEAR 382
*ZERO/*ZEROS 384
& (ampersand)

in date edit 82

use in edit word 411, 414

Numerics
01-99 indicators
See field and field record relation indicators
See indicators conditioning calculations and output
See record identifying indicators and resulting indica-
tors
1P (first page) indicator
conditioning output 174, 177
general description 60
restrictions 60
setting 78
with initialization subroutine (*INZSR) 19
1P forms alignment 84

A
ACQ (acquire) 205
ACQ (acquire) operation code 196
ACQ 205
ADD operation code 189
ADD operation code 206
add records
file-description specifications entry (A) 101

447

add records (continued)
output specification entry (ADD) 172
adding factors 206
altering overflow logic 21
alternate collating sequence
changing collating sequence 428
coding form 427
control specification entry 83, 428
input record format 428
operations affected 428
alternating format (arrays and tables)
example 394
specification of 123
ALTSEQ 428
ampersand (&)
in body of edit word 415
in date edit 82
in status of edit word 411
AND relationship
calculation specifications 161
input specifications 144
output specifications 171, 181
conditioning indicators 174
ANDxx operation code 193, 201, 207
apostrophe
use with edit word 415
use with output constant 180
area parameter for SPECIAL PLIST 432
arithmetic operations
See also calculation
See also factor 1
See also factor 2
See also half adjust
ADD 189, 206
DIV (divide) 189, 244
general information 189
MULT (multiply) 189, 306
MVR (move remainder) 189, 307
SQRT (square root) 189, 355
SUB (subtract) 189, 356

XFOOT (summing the elements of an array) 189,

375
Z-ADD (zero and add) 189, 206, 378
Z-SUB (zero and subtract) 189, 379
array
adding entries to 399
alternating
definition 394
examples 394
specification of 123
combined array file 93, 390
comments 123
compile-time
arrangement in source program 393
definition of 390
with data structure initialization 393

448 RPG/400 Reference

array (continued)
creating input records 390
decimal positions 122
definition 387
differences from table 387
dynamic
See run-time array
editing 400
elements 387
end position 178
entries
length of 121
number per array 122
number per record 121
entries per array 122
entries per record 121
extension specifications
possible entries 119
summary 117
file
description of 93
sequence 123

file name (when required on file-description specifica-

tions) 91
file-description specifications entry 93
format of 122
from file name 119
index 388
initialization of 393
length of entry 122
loading
compile-time 390
from more than one record 389
from one record 389
prerun-time 393
run-time 388
LOKUP operation code 286
maximum number of 117
modifying contents 398
moving (MOVEA operation code) 295
name
and index 388
extension specifications 119
how to form 388
in compare operation codes 194
invalid 388
on extension specifications 121
output specifications 177
rules for 392
valid 388
order in source program 393
output 400
prerun-time arrays
See also prerun-time array or table
rules for loading 393
with data structure initialization 393

array (continued)
referring to in calculations 398
run-time
definition of 387
rules for loading 388
with consecutive elements 390
with data structure initialization 393
with scattered elements 389
searching arrays
without an index 395
searching with an index 397
sequence of data 123
square root (SQRT) operation code 355
summing elements of (XFOOT) operation code 375
to file name 120
types 387
using name and index 388
using name only 388
XFOOT operation code 375
array operations 191
general information 191
LOKUP (look up) 191, 286
MOVEA (move array) 191, 295
SORTA (sort an array) 191, 354
XFOOT (summing the elements of an array) 191,
375
ascending sequence
extension specifications entry 123
file-description specifications entry 94
assigning match field values (M1-M9) 420
asterisk (*)
asterisk fill
in body of edit word 405
with combination edit codes 405
audience xvii
automatic page numbering
See PAGE, PAGE1-PAGE7

B

begin a select group (SELEC) operation code 342
beginning of subroutine (BEGSR) operation code 208
BEGSR (beginning of subroutine) operation code 203,
208
bibliography 445
binary field
data structure subfield specifications 153
for array/table file 122
input specifications 144
output specifications 179
binary format
array/table field 122
input field 145
output field 179
binary operators 209, 210

binary relative-record number 98
bit operation codes 192
bit operations
BITOF (set bits off) 192, 209
BITON (set bits on) 192, 210
general information 192
TESTB (test bit) 192, 361
bit testing (TESTB) 361
BITOF (set bits off) operation code 192, 209
BITON (set bits on) operation code 192, 210
blank after
definition 178
output specifications 178, 183
blocking/unblocking records 28
body (of an edit word) 411
branching operations 192
CABxx (compare and branch) 192, 212
ENDSR (end of subroutine) 192, 259
EXCPT (calculation time output) 192, 260
general description 192
GOTO (go to) 192, 271
ITER (iterate) 192, 278
LEAVE (leave a structured group) 192, 284
TAG (tag) 192, 360
branching within logic cycle 212

C

CABxx (compare and branch) operation code 192,
193, 212
calculating 2
calculation
indicators
AND/OR relationship 67, 161
conditioning 67, 157
control level 66, 160
resulting 58, 164
operation codes 162
summary of 185
specifications
entries for factor 1 162
entries for result field 162
other uses for 164
relationship between positions 7 and 8 and
9-17 160
summary of 157
summary of operation codes 185
subroutines
BEGSR (beginning of subroutine) operation
code 208
coding of 264
ENDSR (end of subroutine) operation code 259
EXSR (invoke subroutine) operation code 263
SR identifier 161
calculation specifications
comments 164

Index 449

calculation specifications (continued)
control level 160
decimal positions 163
factor 1 162
factor 2 162
field length 162
general description 157
indicators 161
operation 162
operation extender 163
result field 162
resulting indicators 164
summary of 157
calculation-time output (EXCPT) operation code 260
CALL (call a program) operation code 193, 214
call operation codes 193
call operations
CALL (call a program) 193, 214
FREE (deactivate a program) 193, 269
general description 193
PARM (identify parameters) 193, 318
PLIST (identify a parameter list) 193, 320
RETRN (return to caller) 193, 338
CASxx (conditionally invoke subroutine) operation
code 193, 201, 203, 218
CAT (concatenate two character strings) operation
code 200, 220
CHAIN (random retrieval from a file based on record
num ber or key value) operation code
CHAIN (random retrieval from a file based on record
number or key v alue) operation code 224
CHAIN (random retrieval from a file based on record
number) operation code eration code 196
changing between character fields and numeric
fields 198
character
collating sequence 428
in record identification code 143
keys in record address type 97
literals 8
valid set 1
CHECK (check) operation code 200, 227
checking sequence
See sequence checking
CHEKR (check reverse) operation code 200, 229
CL programs
See control language (CL) program
CLEAR operation code 198, 231
CLOSE (close files) operation code 196, 234
closing a file 234
code part
in record identification code for program described
file 143
codes, operation
See operation codes

450 RPG/400 Reference

coding subroutines 264
collating sequence

See also alternate collating sequence

alternate 428

EBCDIC 441

normal 428
collating sequence, alternate 83
combination edit codes (1-4, A-D, J-Q) 404
combined file

description 92
COMIT (commit) operation code 196, 235
command attention (CA) keys

See command keys
command function (CF) keys

See command keys
command keys

corresponding indicators 65
comments

on array input records 390, 393

on calculation specifications 164

on extension specifications 124
common entries to all specifications 5
COMP (compare) operation code 193, 236
compare and branch (CABxx) operation code 212
compare operation

ANDxx (and) 193, 207

CABxx (compare and branch) 193, 212

CASxx (conditionally invoke subroutine) 193, 218

COMP (compare) 193, 236

DOUxx (do until) 193, 248

DOWxx (do while) 193, 251

general information 193

IFxx (ifithen) 193, 273

ORxx (or) 193, 315

WHxx (when true then select) 193, 371
compare operation codes 193
comparing bits 361
comparing factors 212, 236

See also CABxx operation code
compile time array or table

See also array

general description 390

rules for loading 390

with data structure initialization 393

compiler
directives 2
/COPY 3
/EJECT 3
/ISPACE 3
ITITLE 2

composite key operation codes
KFLD (define parts of a key) 282
KLIST (define a composite key) 282
concatenate two character strings (CAT) operation
code 220

conditionally invoke subroutine (CASxx) operation
code 218
conditioning calculations 157
conditioning files 102
conditioning indicators
calculation
general description 66
positions 7 and 8 66
positions 9 through 17 66
specification of 161
file
general description 62
rules for 62
specification of 101
general description 62
output
controlling a record 174
controlling fields of a record 176
general information 62
specification of 174
conditioning output
explanation of 71
for fields of a record 176
for records 174
constants 8
See also edit words
See also literals
entries for factor 2 8
figurative 384
*ALL'X..", *ALLX'x1..", *BLANK/*BLANKS,
*HIVAL/*LOVAL, *ZERO/*ZEROS,
*ON/*OFF 384
in named constant specification 155
name in named constant specification 155
named 9
rules for use on output specification 180
continuation line 90
continuation line option
COMIT (Commit) operation code
ID entry 111
IGNORE 112
IND entry 112
INFDS (file information data structure) 112
INFSR (file exception/error subroutine) 112
NUM entry 112
PASS keyword 112
PLIST (parameter list for SPECIAL files) 113
PRTCTL (printer control) 113
RECNO (relative-record number field) 113
RENAME (re-name record format) 113
SAVDS entry 113
SFILE (WORKSTN subfile record) 114
SLN (Start Line Number) 114
summary table 110
continuation line options 100, 110

continuation record
See continuation line
control break
See also control field
See also control group
See also control level indicators
general description 50
how to avoid unwanted 51
on first cycle 50
unwanted 53
control entries
in output specification 170
summary of 165, 167, 169
control field
See also control break
See also control level indicators
assigning on input specifications
externally described file 150
program described file 146
general information 50
overlapping 53
split 55
control group
See also control break
See also control field
See also control level indicators
general information 50
control language (CL) program
control level (L1-L9) indicators 160
See also conditioning calculations
See also control break
See also control field
See also control group
as field record relation indicator 63, 147
as record identifying indicator 141, 148
assigning to input fields 146, 150
conditioning calculations 157
conditioning output 174
examples 52, 56
general description 50
in calculation specification 160
rules for 50
setting of 78
control specifications
alternate collating sequence 83
currency symbol 82
data area (DFTHSPEC) 79
data area (RPGHSPEC) 79
date edit 82
date format 82
debug 81
decimal notation 82
file translation 84
form type 81
forms alignment 84
general description 79

Index

451

control specifications (continued)
program indentification 85
sign handling 83
summary of 79
transparency check 84
controlling input of program 22
controlling spacing of compiler listing 3
CR (negative balance symbol)
with combination edit code 404
with edit words 414
currency symbol 82
cycle, program
detailed description 16
fetch overflow logic 21
general description 11
with initialization subroutine (*INZSR) 19
with lookahead 22
with match fields 21
with RPG/400 exception/error handling 22

D

data area data structure
initialization of subfields 153
renaming 151
specification of subfields 153
statement
externally described 151
program described 152
specifications 151
subfields 153
data areas
defining 239
DFTHSPEC data area 79
local data area (LDA) 240
PIP data area (PDA) 239
restrictions 240
retrieval
explicit 276
implicit 14
RPGHSPEC data area 79
unlocking
explicit 313
implicit 15
UNLCK operation code 368
writing
explicit 317
implicit 15
data format
See binary format
See packed decimal format
data management feedback area
See file information data structure
data structure statement specification, input specifica-
tion
comments 153

452 RPG/400 Reference

data structure statement specification, input specifica-
tion (continued)
data structure name 151
data structure occurrences 152
external description 151
external file name 152
general description 151
length 152
option 152
record identifying indicator 152
summary tables 135
data structure subfield specification, input specification
comments 154
decimal positions 154
external field name 153
field location 154
field name 154
general description 153
initialization option 153
initialization value 153
internal data format 154
summary tables 137
data type, in named constant specification 155
data-area operations
DEFN (field definition) 239
general information 194
IN (retrieve a data area) 194, 276
OUT (write a data area) 194, 317
UNLCK (unlock a data area) 194, 368
date edit 82
date field
effect of decimal notation 82
effect of end position 406
relation to entry in position 21 of control
specification 82
zero suppression 404
date format 82
date, user 382
*DATE, *DAY, *MONTH, *YEAR 382
UDATE, UDAY, UMONTH, UYEAR 382
DBCS
See double byte character set
deactivate a program (FREE) operation code 269
DEBUG (debug function) operation code 197, 237
debugging RPG programs
See breakpoint
See DEBUG and DUMP operation codes
decimal data format
See packed decimal format
decimal notation 82
decimal positions
calculation specifications 163
extension specifications 122
input specifications
data structure subfield entry 154
field description entry for program described
file 145

decimal positions (continued)
with arithmetic operation codes 189
declarative operations
DEFN (field definition) 195, 239
general information 195
KFLD (define parts of a key) 195, 281
KLIST (define a composite key) 195
PARM (identify parameters) 195, 318
PLIST (identify a parameter list) 195, 320
TAG (tag) 195, 360
declare
See declarative operation codes
define a composite key (KLIST) operation code 282
define parts of a key (KFLD) operation code 281
defining a field as a data area 239
defining a field based on attributes 239
defining a file 2
defining a symbolic name for the parameter list 320
defining an alternate collating sequence 428
defining indicators 47
defining parameters 318
DEFN (field definition) operation code 195, 239
DELET (delete record) operation code 196, 243
delete a record
DELET (delete record) operation code 243
output specifications entry (DEL) 172
descending sequence
extension specifications entry 123
file-description specifications entry 94
describe data structures 129
describing arrays 2, 117
See also extension specifications
describing data structures
See input specifications
describing record address files 117
See also extension specifications
describing tables 2, 117
See also extension specifications
describing the format of fields 165
See also output, specifications
describing the record 165
See also output, specifications
describing when the record is written 165
See also output, specifications
detail (D) output record 171
detail calculations
See calculation
detailed program logic 16
DETC
file exception/error subroutine (INFSR) 38
file information data structure (INFDS) 27
flowchart 15
program exception/errors 42
device 99
devices
multiple 432

devices (continued)
on file-description specification 99

SPECIAL 431
DFTHSPEC data area 79
digit entry

See code part
disconnecting a file from the program 234
DISK file

processing charts

program-described 105, 108
processing methods 102
program described
processing 102

summary of processing methods 102
display function (DSPLY) operation code 253
distributed data management (DDM)
DIV (divide) operation code 189, 244
dividing factors 244
DO operation code 201, 245
DO-group

general description 201
double asterisk (**)

for program described files 140
double byte character set

examples 435

how to work with 435

on control specification 84
DOUxx (do until) operation code 193, 201, 248
DOWXxx (do while) operation code 193, 201, 251
DSPLY (display function) operation code 198, 253
DUMP (program dump) operation code 197, 256
dynamic array

See run-time array

E

EBCDIC
collating sequence 441

edit codes
combination (1-4, A-D, J-Q) 404
date field 82
description 403
effect of decimal notation 405
effect on end position 406
examples 416
simple (X, Y, Z) 403
summary tables 404, 407
user-defined (5-9) 406
zero suppression 404

edit word
body 411
examples 416
expansion 411
formatting 410, 415
on output specifications 180
parts of 410

Index

453

edit word (continued)
rules for 415

status 411
edit, date 82, 404
editing

date fields 404
externally described files 416
non-printer files 406
elements of an array
See array
ELSE (else do) operation code 201, 257
else do (ELSE) operation code 257
end a group (ENDyy) operation code 258
End Job (ENDJOB) 324
end of file
file-description specifications entry 94
with primary file 60
end position
effect of edit codes on 409
in output record
for RPG/400 output specifications 178
End Subsystem (ENDSBS) 324
End System (ENDSYS) 324
ending a group of operations (CASxx, DO, DOUXxX,
DOWSxx, IFxx, SELEC) 258
ending a program, without a primary file 22
ending a subroutine 259
ENDJOB (End Job) 324
ENDSBS (End Subsystem) 324
ENDSR (end of subroutine) operation code 192, 203,
259
ENDSYS (End System) 324
ENDyy (end a group) operation code 201, 258
error handling
file exception/error subroutine 37
file information data structure 25
INFSR 37
major/minor error return codes 41
program exception/error subroutine (*PSSR) 45
program status data structure 42
status codes 39, 44
file 39
program 42, 44
steps 24
error logic
error handling routine 24
error parameter for SPECIAL PLIST 431
examples of program exception/errors 41
exception (E) output records 171
exception/error codes
file status codes 40
program status codes 45
exception/error handling
flowchart 24
EXCPT (calculation time output) operation code 192,
196, 260

454 RPG/400 Reference

EXCPT name
on output specifications 175
rules for 7
EXFMT (write/then read format) operation code 196,
262
expansion (of an edit word) 411, 415
EXSR (invoke subroutine) operation code 203, 263
extension code file-description specifications entry for
program-described file 99
extension specifications
array or table name 121
comments 124
data format 122
decimal positions 122
entries per array or table 122
entries per record 121
entry on file-description specifications 99
file entries 119
form type 119
from file name 119
general description 117
illustration 117
length of entry 122
possible entries 119
second array description 123
sequence 123
summary of 117
to file name 120
external (U1-U8) indicators
as field indicator 147, 150
as field record relation indicator 63, 147
as record identifying indicator 140, 149
assigning on file-description specifications 102
conditioning calculations 161
conditioning output 174
general description 60
resetting 60, 147
setting 78
used to condition files 102
external data format
in input specification 144
external description
on data structure specification 151
external field name
in data structure subfield specification 153
renaming 149
external file name, on data structure specification 152
external message queue (*EXT) 253
externally described file
editing 416
field description entries 134
input 134
output 134
input specifications for 148
output specifications for 181
record identification entries 133

externally described file (continued)
summary of 169

externally described files, field description and control

entries, output specifications
blank after 183
constant or edit word 183
data format 183
edit codes 182
end position 183
field name 182
output indicators 182
summary of 170

externally described files, field description entries, input

specifications
comments 151
control level 150
external field name 149
field indicators 150
field name 150
general description 149
matching fields 150
renaming fields 134
summary tables 134
externally described files, record identification and
control entries, output specifications
EXCPT name 182
fetch overflow/space/skip 181
logical relationship 181
output indicators 182
record addition 181
record name 181
release 181
summary of 169
type 181

externally described files, record identification entries,

input specifications

comments 149

formtype 148

general description 148
record identification code 149
record identifying indicator 149
record name 148

summary tables 133

F

factor 1
as search argument 286
entries for, in calculation specification 162
in arithmetic operation codes 189
factor 2
entries for, in calculation specification 162
in arithmetic operation codes 189
FEOD (force end of data) operation code 196, 267
fetch overflow
See also overflow (OA-OG, OV) indicators

fetch overflow (continued)

entry on output specifications 172
general description 21, 172

logic 21

relationship with AND line 174
relationship with OR line 174

field

binary
on extension specifications 122
on input specifications 154
on output specifications 179
control 50
defining as data area 240
defining new 162
description entries in input specification 144, 149
description summary 167
key 96
key, starting location of 99
location and size in record 145
location in input specification 145
location, with subfield specification 154
lookahead
with program described file 140, 141
match 419
name in input specification 145
numeric
on output specifications 176
with data structure subfield specification on input
specification 154
record address 96
result 162
zeroing 178

field definition (DEFN) operation code 239
field indicators (01-99, H1-H9, U1-U8, RT)

as halt indicators 57
assigning on input specifications
for externally described files 150
for program described files 147
conditioning calculations 161
conditioning output 174
general description 57
numeric 57
rules for assigning 57
setting of 78

field length

alphanumeric 153

arithmetic operation codes 189
calculation operations 162
calculation specifications 162
compare operation codes 193
input specifications 144, 154
key 96

numeric 154

numeric or alphanumeric 145
record address 96

Index 455

field line, summary of 167

field location entry (input specifications)

for program described file 145

field name

as result field 162

external 149, 150

in an OR relationship 144

in data structure subfield specification 154
in input specification 150

on output specifications 176

file (continued)

name (continued)
entry on output specifications 170
externally described 92
program described 91
rules for 7
nonkeyed program described 98
normal codes for file status 39
number allowed on file-description specifications
opening, user control of 101

rules for 7 output 92
special words as 176 primary 93
special words as field name 382 PRINTER

field record relation indicators (01-99, H1-H9, L1-L9,

Ul-U8)
assigning on input specifications 147
example 64
general description 63
rules for 63
figurative constants
*ALL'X..", *ALLX'X1..", *BLANK/*BLANKS,

*HIVAL/*LOVAL, *ZERO/*ZEROS, *ON/*OFF 384

rules for 385

See PRINTER file
processing 22
processing charts

DISK file 105
program described

See program described file
record address 93

See also record address file
rules for conditioning 62
secondary 93

file SEQ
adding records to 100, 172 See SEQ file
array 93 SPECIAL

See also array
combined 92

See SPECIAL file
status codes 39

87

conditioning indicators 62, 101 table 93
deleting existing records from 172 See also table
deleting records from tape
DEL 172 See SEQ file
DELET 243 types 87,92
DISK file 105, 108 update 92
description specifications 91 WORKSTN
designation 93 See WORKSTN file
DISK file conditioning indicators 59, 101

display device
See WORKSTN file
end of 94

general description 62
file dependent feedback information 34
file description specifications

exception/error codes 40
externally described
See externally described file
externally described, input specification for 148
feedback information in INFDS 29
feedback information in INFDS after POST 29
file organization 98
format 95
full procedural 22, 94
indexed 98
input 92
maximum number allowed 87
name
entry on extension specifications 119, 120
entry on file-description specifications 91
entry on input specifications 139
entry on line counter specifications 126

456 RPG/400 Reference

comments 102
continuation lines 100

end of file 94

extension code 99

file addition 100

file condition 101

file designation 93

file format 95

file name 91

file organization 98

file type 92

form type 91

general description 87

key field starting location 99
length of key or record address 96
limits processing 96

file description specifications (continued)
maximum number of files allowed 87
overflow indicator 99
record address type 97
record length 95
routine 100
sequence 94
summary of 88
file exception/error subroutine (INFSR)
continuation line option 112
description 37
return points 37
specifications for 37
file exception/errors
how to handle subroutine (INFSR) 37
statement specifications 142
file information data structure 25, 26
contents of file feedback information 29
contents of file feedback information after POST 29
contents of I/O feedback information 32
contents of open feedback information in INFDS 30
contents of the I/O feedback information after POST
operation 34
continuation line option 111, 112
data management feedback area 28
entry on file-description specifications 111
feedback information 28, 29
file dependent feedback information 34
keywords
predefined subfields 26
status codes 39
subfields
file operations
ACQ (acquire) operation code 196, 205
allowed with DISK file 105
CHAIN (random retrieval from a file based on record
number) 196, 224
CLOSE (close files) operation code 196, 234
COMIT (commit) operation code 196, 235
DELET (delete record) operation code 196, 243
EXCPT (calculation time output) operation
code 196, 260
EXFMT (write/then read format) operation
code 196, 262
FEOD (force end of data) operation code 196, 267
FORCE (force a file to be read) operation
code 196, 268
general description 196
NEXT (next) operation code 196, 308
OPEN (open file for processing) operation
code 196, 313
POST (post) operation code 196, 322
READ (read a record) operation code 196, 323
READC (read next modified record) operation
code 196, 325
READE (read equal key) operation code 196, 326

file operations (continued)

READP (read prior record) operation code 196, 329

REDPE (read prior equal) operation code 196, 331
REL (release) operation code 196, 334
ROLBK (roll back) operation code 196, 339
SETGT (set greater than) operation code 196, 344
SETLL (set lower limits) operation code 196, 348
UNLCK (unlock a data area) operation code 196,
368
UPDAT (modify existing record) operation
code 196, 368
WRITE (create new records) operation code 196,
374
file translation 429
on control specification 84
table records 431
finding programming errors
See DEBUG operation code
See DUMP operation code
first page (1P) forms alignment 84
first page (1P) indicator
conditioning output 174, 177
general description 60
restrictions 60
setting 78
first program cycle 11
floating currency symbol
See edit word
flowchart
detailed program logic 16
fetch-overflow logic 20
general program logic 11
lookahead logic 20
match fields logic 20
RPG/400 exception/error handling 24
FORCE (force a file to be read) operation code 196,
268
force a certain file to be read on the next cycle
(FORCE) operation code 268
force end of data (FEOD) operation code 267
form type
externally described files 148
in calculation specification 160
on control specification 81
on description specifications 91
on extension specifications 119
on line counter specification 126
program described file 138
format
of file 95
format, date 82
formatting edit words 415, 416
forms alignment, 1P 84

FREE (deactivate a program) operation code 193, 269

from file name (extension specifications) 119

Index 457

full procedural file
description of 94
file operation codes 196
file-description specifications entry 93
function key
corresponding indicators 65
function key indicators (KA-KN, KP-KY)
See also WORKSTN file
corresponding function keys 65
general description 65
setting 78

G

general (01-99) indicators 47
general program logic 11
generating a program 1

See also control specifications
get/set occurrence of data structure 309
go to (GOTO) operation code 271
GOTO (go to) operation code 192, 271

H

H1-H9
See halt (H1-H9) indicators
half adjust
on calculation specifications 163
operations allowed with 163
halt (H1-H9) indicators
as field indicators 147, 150
as field record relation indicator 147
as record identifying indicator 140, 149
as resulting indicator 164
conditioning calculations 161
conditioning output 174, 176
general description 66
setting 78
header specifications
See control specifications
heading (H) output records 171
heading information for compiler listing 2
hexadecimal literal
See literal

1/0 feedback information in INFDS 32

1/0O feedback information in INFDS after POST opera-
tion 34

ID entry, continuation line options 111

identification of a program 85

identifying a parameter list 320

iffthen (IF) operation code 273

IFxx (if/then) operation code 193, 201, 273

458 RPG/400 Reference

IGNORE
continuation line option 112
IN (retrieve a data area) operation code 194, 276
IND entry, continuation line option 112
indentation bars in source listing 246, 273
indexed file
format of keys 98
key field 99
processing 98
indicating calculations 157
See also calculation, specifications
indicating length of overflow line 2
indicating length of the form 125
See also line counter specifications
indicator-setting operations
general information 197
SETOF (set off) 197, 351
SETON (set on) 197, 352
indicators
See also individual operation codes
calculation specifications 164
command key (KA-KN, KP-KY)
See also WORKSTN file
conditioning output 71
general description 65
setting 78
conditioning calculations 66
conditioning output 71
control level 160
control level (L1-L9)
as field record relation indicator 63, 146
as record identifying indicator 140, 150
assigning to input fields 146, 150
conditioning calculations 161
conditioning output 174, 176
examples 52, 56
general description 50
rules for 50, 55
setting of 78
description 47
external (U1-U8)
as field indicator 57
as field record relation indicator 63, 147
as record identifying indicator 48
assigning on file-description specifications 101
conditioning calculations 161
conditioning output 174
general description 60
resetting 60, 147
rules for resetting 60, 63
setting 78
used to condition files 101
field
as halt indicators 57
assigning on input specifications 147, 150
conditioning calculations 161
conditioning output 174

indicators (continued) indicators (continued)

field (continued) overflow
general description 57 assigning on file-description specifications 99
numeric 57 conditioning calculations 66, 161
rules for assigning 57 conditioning output 174, 176
setting of 78 fetch overflow logic 21
field record relation general description 47
assigning on input specifications 147 setting of 78
example 64 with exception lines 175, 260
general description 63 record identifying
rules for 63 assigning on input specifications 48
file conditioning 62, 101 conditioning calculations 161
first page (1P) conditioning output 174, 176
conditioning output 174, 177 general description 48
general description 60 rules for 48
restrictions 60 setting on and off 78
setting 78 summary 77
with initialization subroutine (*INZSR) 19 with file operations 48
halt (H1-H9) return (RT) 61
as field indicator 57 as field indicator 57
as field record relation indicator 63, 147 as record identifying indicator 149
as record identifying indicator 48 as resulting indicator 58, 164
as resulting indicator 58, 164 conditioning calculations 161
conditioning calculations 161 conditioning output 71
conditioning output 174, 176 rules for assigning 48
general description 66 rules for assigning resulting indicators 57
setting 78 setting of 78
internal 58 status
first page (1P) 60 program exception/error 42
last record (LR) 60 summary chart 77
matching record (MR) 61 used as data 75
return (RT) 61 using 62
last record (LR) when set on and set off 78
as record identifying indicator 48, 140, 149 INFDS
as resulting indicator 58, 164 See file information data structure
conditioning calculations 160, 161 information operations
conditioning output 174, 176 DEBUG 237
general description 60 DEBUG (debug function) 197, 237
setting 78 DUMP (program dump) 197, 256
level zero (LO) general information 197
calculation specification 160 SHTDN (shut down) 197, 353
calculation specifications 66 TIME (time of day) 197, 366
matching record (MR) INFSR
See also multifile processing See file exception/error subroutine (INFSR)
as field record relation indicator 63, 147 initialization
assigning match fields 419 of arrays 393
conditioning calculations 161 of data structure subfields 153
conditioning output 174, 176 of data structures 151, 393
general description 61 subroutine (*INZSR) 19
setting 78 subroutine with RESET operation code 335
on RPG/400 specifications 47 value in subfield initialization 153
output initialization operations
AND/OR lines 176 CLEAR (clear) 231
assigning 174 general information 198
examples 72,73 RESET (reset) 335

general description 72
restriction in use of negative indicators 72, 174

Index 459

initialization step 16
initialization subroutine (*INZSR)
description 19
with RESET operation code 335
input
file 92
input specifications
See data structure statement specification
See data structure subfield specification
See externally described files, field description
entries
See externally described files, record identification
entries
See indicators
See named constant
See named constant continuation
See program described files, field description entries
See program described files, record identification
entries
input specifications for program described file
field
decimal positions 145
format 144
name 145
filename 139
indicators
control level 146
field 144
field record relation 147
record identifying 140
lookahead field 141
number of records 140
option 140
record identification codes 142
sequence checking 139
inserting records during a compilation 3
internal data format, in data structure subfield specifica-
tion 154
internal indicators 58
first page (1P) 60
last record (LR) 60
matching record (MR) 61
return (RT) 61
INVITE DDS keyword 323
invoke subroutine (EXSR) operation code 263
INZSR
See initialization subroutine (*INZSR)
ITER (iterate) operation code 192, 201, 278

K

key

for record address type 98
key field

alphanumeric 97

for externally described file 97

460 RPG/400 Reference

key field (continued)
format of 97
length of 96
packed 97
starting location of 99
keyed processing
indexed file 98
random 103
sequential 102
specification of keys 97
KFLD (define parts of a key) operation code 195, 281
KLIST (define a composite key) operation code 195,
282

L

LO indicator
See level zero (LO) indicator
L1-L9 (control level) indicators
See control level (L1-L9) indicators
label, rules for 7
last program cycle 11
last record (LR) indicator
as record identifying indicator 140, 149
as resulting indicator 58, 164
conditioning calculations
positions 7 and 8 160, 161
positions 9-17 161
conditioning output 174, 176
general description 60
in calculation specification 160
setting 78
LEAVE (leave a structured group) operation code 192,
201, 284
length of data structure 152
length of entry, on extension specifications 122
level zero (LO) indicator
calculation specification 160
calculation specifications 66
limits processing, file-description specifications 96
line counter specifications
comments 127
file name 126
form length 126
form type 126
general description 125
lines per page 126
overflow line 126
overflow line number 126
summary of 125
line skipping 171
line spacing 171
lines per page 126
literals
alphanumeric 8
character 8

literals (continued)

hexadecimal 8

implied

See figurative constants

numeric 9
local data area 240
locking/unlocking a data area or record 368
logic cycle, RPG

detail 16
general 11
logical file

logical relationship
calculation specifications 161
input specifications 144
output specifications 171, 181
LOKUP (look up) operation code 191, 286
arrays 286
tables
with one table 401
with two tables 401
look-ahead function 22
lookahead field 141
LR (last record) indicator
See last record (LR) indicator

M
M1-M9 (match field values) 420
major/minor return codes 41
general information
indicators in positions 56 and 57 41
match fields
See also multifile processing
alternate collating sequence 428
assigning values (M1-M9) to 420
description 419
dummy match field 421, 423
example 421, 422
in multi-file processing 419
input specifications for 146, 150
logic 21
used for sequence checking 420
match levels (M1-M9) 420
matching record (MR) indicator
See also multifile processing
as field record relation indicator 63, 147
assigning match fields 146, 150
conditioning calculations
positions 7 and 8 160
positions 9-17 161
conditioning output 174, 176
general description 61
setting 78
maximum number of files allowed 87
message identification 253

message operations
DSPLU (display function) 198, 253
DSPLY (display function) 253
general information 198
MHHZO (move high to high zone) operation code 199,
288
MHLZO (move high to low zone) operation code 199,
289
mixed file
See WORKSTN file
MLHZO (move low to high zone) operation code 199,
290
MLLZO (move low to low zone) operation code 199,
291
modifying an existing record 369
move array (MOVEA) operation code 295
move high to high zone (MHHZO) operation code 288
move high to low zone (MHLZO) operation code 289
move left (MOVEL) operation code 302
move low to high zone (MLHZO) operation code 290
move low to low zone (MLLZO) operation code 291
MOVE operation code 198, 292
move operations
general information 198
MOVE 198, 292
MOVEA (move array) 198, 295
MOVEL (move left) 198, 302
move remainder (MVR) operation code 307
move zone operations
general information 199
MHHZO (move high to high zone) 199, 288
MHLZO (move high to low zone) 199, 289
MLHZO (move low to high zone) 199, 290
MLLZO (move low to low zone) 199, 291
MOVEA (move array) operation code 191, 198, 295
MOVEL (move left) operation code 198, 302
moving the remainder 307
moving zones 288
MR (matching record) indicator
See matching record (MR) indicator
MULT (multiply) operation code 189
multifile logic 21
multifile processing
assigning match field values 420
FORCE operation code 268
logic 21
match fields 419
no match fields 419
normal selection, three files 424, 425
multiply (MULT) operation code 306
multiplying factors 306
MVR (move remainder) operation code 189, 307

Index 461

N

name(s)
array 6,7
data structure 7
EXCPT 7,175
field 7
on input specifications 145, 150
on output specifications 174
file 7
for *ROUTINE
with file information data structure (INFDS) 27
with program status data structure 42
KLIST 7
labels 7
of routine (label exit) 100
PLIST 7
record 7
rules for 6,7
subfield 8
subroutine 8
symbolic 6
table 8
named constant continuation, input specifications
constant 155
example of a hexadecimal constant 156
examples of named constants 155
summary tables 138
named constant, input specifications 9
constant 155
constant name 155
data type 155
general description 155
specification summary chart 142
summary tables 138
negative balance (CR)
with combination edit code 404
with edit words 416
nested DO-group
example 202
NEXT (next) operation code 196, 308
nonkeyed processing 97
normal codes
file status 39
program status 44
normal program cycle 11
NUM entry, continuation line option 112
number
maximum of arrays or tables 117
of entries per array or table 122
of entries per record 121
of entries per record in an array 121, 122
of entries per table 122
of occurrences on data structure specification 152
of records for program described files 140

462 RPG/400 Reference

numbering pages
See PAGE, PAGE1-PAGE7
numeric (01-99) indicators
See field and field record relation indicators
See indicator conditioning calculations and output
See record identifying and resulting indicators
numeric fields
auto report
punctuation 403
resetting to zeros 178
numeric literals
considerations for use 9

O

OA-OG, OV (overflow) indicators
See overflow (OA-OG, OV) indicators
OCUR (set/get occurrence of a data structure) operation
code 309
OFL
file exception/error subroutine (INFSR) 38
file information data structure (INFDS) 27
flowchart 15
program exception/errors 42
OPEN (open file for processing) operation code 196,
313
specifications for 313
opening file for processing 313
operation codes
See ?
See arithmetic operations
See array operations
See bit operations
See branching operations
See call operations
See compare operation
See data-area operations
See declarative operations
See file operations
See indicator-setting operations
See information operations
See message operations
See move operations
See move zone operations
See string operations
See structured programming operations
See subroutine operations
See test operations
call and branching
declarative
file
information
message
test
operation codes list

operation extender 163
operations, in calculation specification 162
option parameter for SPECIAL PLIST 431
OR lines

on calculations 162

on input specifications 144

on output specifications 171, 181
ORXxx operation code 193, 201, 315
OTHER (otherwise select) operation code 201, 316
otherwise select (OTHER) operation code 316
OUT (write a data area) operation code 194, 317

output
#IN, *INxx, *IN xx 177
*PLACE 177

ADD record 172

blank after 178

conditioning indicators 71, 174

DEL (delete) record 172

edit codes 178

end position of field 178

EXCPT name 175

field
format of 180
name 176

field description control 165

file 92

PAGE, PAGE1-PAGE7 176

record
end position in 178

record identification and control 165

specifications
*ALL 182
ADD records for externally described files 181
AND/OR lines for externally described files 181
AND/OR lines for program described file 171
DEL (delete) records for externally described

files 181

detail record for program described file 172
exception record for program described file 172
EXCPT name for externally described files 182
externally described files 180
field name 182
file name for program described file 171
for fields of a record 176
for program described file 170
for records 170
general description 165
indicators for externally described files 181
record name for externally described files 181
record type for externally described files 181
specification and entry 170

summary of 165

UDATE 176

UDAY 176

UMONTH 176

UYEAR 176

output specifications
See externally described files, field description and
control entries
See externally described files, record identification
and control entries
See program described files, field description and
control entries (field line)
See program described files, record identification and
control entries (record line)
overflow
line 126
line number 126
line, indicating length of 2
overflow indicators
assigning on file-description specifications 99
conditioning calculations 66, 161
conditioning output 174
fetch overflow logic 21
general description 47
setting of 78
with exception lines 175, 257
overlapping control fields 53

P

packed decimal format
keys 97
page numbering
See PAGE, PAGE1-PAGE7
PAGE, PAGE1-PAGE 7 177, 383
parameter list
See also PARM operation code
created by SPECIAL 431
PARM (identify parameters) operation code 193, 195,
318
PASS keyword, continuation line option 112
passing control to program
See CALL operation code
PDA
See PIP (Program Initialization Parameters) Data
Area
PIP (Program Initialization Parameters) data area 240
DEFN (field definition) 239
IN (retrieve a data area) 276
OUT (write a data area) 317
UNLCK (unlock a data area or record) 368
PLIST (identify a parameter list) operation code 193,
195, 320
PLIST keyword for SPECIAL file
continuation line option 113
description of parameters 431
position of record identification code 142
POST (Post) operation code 196, 322
Power Down System (PWRDWNSYS) 324
prerun-time array or table
See also array

Index 463

prerun-time array or table (continued)
coding 392
description of parameters 431
example of 391
rules for loading 393
prevent printing over perforation 21
primary file
ending a program without 22
file-description specifications 93
general description 93
printer control option
See PRTCTL
PRINTER file
device name 99
fetch overflow logic 21
form length 126
lines per page 126
overrides for form length 125
processing methods
for DISK file 102
random-by-key 103
program
status, codes 44
status,exception/error codes 45
program communication
program cycle

defined 11
detail 16
general 11

programmer control 22
with initialization subroutine (*INZSR) 19
program described file
entries on
file-description specifications 87
input specifications 129, 138
output specifications 165
field description entries 132
in output specification 170
length of key field 96
length of logical record 95
record identification codes 131
record identification entries 130
summary of 167
program described files, field description entries, input
specifications
comments 154
data format 144
decimal positions 154
field location 145
field name 154
general description 144
summary tables 132
program described files, record identification entries,
input specifications
file name 139
general description 138

464 RPG/400 Reference

program described files, record identification entries,
input specifications (continued)
logical relationship 139
number 140
option 140
record identification codes 142
record identifying indicator, or ** 140
sequence 139
summary tables 130
program dump (DUMP) operation code 256
program ending, without a primary file 22
program exception/errors
general information 41
indicators in positions 56 and 57 sequence coding
sheet 41
data structure 42
status information 41
return point entries 38
*CANCL 38, 42
*DETC 38, 42
*DETL 38, 42
*GETIN 38, 42
*OFL 38, 42
*TOTC 38, 42
*TOTL 38
blanks 38, 42
subroutine 45
program generation 79
program identification
See program name
program name
default 85
on control specification 85
program running 79
See also control specifications
program status data structure
*ROUTINE 42
*STATUS 42
contents 43
general information 42
keywords 42
*PARMS 42
*PROGRAM 42
*ROUTINE 42
*STATUS 42
predefined subfield 42
status codes 44
subfields
predefined 42
with OCUR operation code 309
programmer control of file processing 22
protecting records/files
PRTCTL (printer control)
continuation line option 113
relationship to positions 60-65 on file-description
specifications 113

PRTCTL (printer control) (continued)
with space/skip entries 173
PWRDWNSYS (Power Down System) 324

QSYSOPR 253

queues
*EXT (external message) 253
QSYSOPR 253

R

random retrieval from a file based on record number or

key value (CHAIN)
operation code 224
READ (read a record) operation code 196, 323
READC (read next modified record) operation
code 196, 325
READE (read equal key) operation code 196, 326
reading a record 323
specifications for 323
reading prior record 326
READP (read prior record) operation code 196, 329
RECNO
continuation line option 113
record
adding to a file 101, 172
deleting from a file 172, 243
detail (D) 172
exception (E) 171
with EXCPT operation code 260
externally described 181
heading (H) 171
input specifications
externally described file 148
program described file 138
length 95
output specifications
externally described 180
program described 170
record line 170
renaming 113
total (T) 172
record address field, length 96
record address file
description 93
extension specifications entry 119
file-description specifications entry 93
format of keys 97
length of record address field 96
number allowed per program 93
relative-record number 98
restrictions 93
S/36 SORT files 95
sequential-within-limits 96

record address limits file
See record address file
record address relative record number file
See record address file
record address type 97
record identification codes 142
for input specification 149
record identification entries
in output specification 170
input specifications 138, 148
output specifications 170, 181
record identification entries, summary of 165
progdes.summary of 165
record identifying indicators (01-99, H1-H9, L1-L9, LR,
U1-U8, RT)
assigning on input specifications
for externally described file 148
for program described file 138
rules for 48
conditioning calculations 160, 161
conditioning output 174, 176
for input specification 149
for program described files 140
general description 48
in data structure specification 152
setting on and off 78
summary 77
with file operations 48
record line 170
summary of 165
record name
for externally described input file 148
for externally described output file 181
rules for 7
record sharing
See file locking by RPG
records, alternate collating sequence table 428
records, file translation table 429
REDPE (read prior equal) operation code 196, 331
REL (release) operation code 196, 334
relative record number record address file
See record address file
Release (output specifications) 181
release (REL) 334
release, output specifications 172
RENAME
continuation line option 113
requester
accessing with ID 111
in INFDS 30, 34
reserved words
*ALL 182
*ALL'x.." 384
*ALLX'x1.." 384
*BLANK/*BLANKS 384
*CANCL 15, 38

Index 465

reserved words (continued)

*DATE, *DAY, *MONTH, *YEAR 382

*DETC 27, 42

*DETL 27, 42

*ENTRY PLIST 318

*FILE 27

*GETIN 27, 42

*HIVAL/ALOVAL 384

*IN 75

*IN,xx 75

*INIT 27, 42

*INP 27

*INXX 75

*LDA 240

*MODE 27

*NOKEY 231

*OFL 27, 42

*ON/*OFF 384

*OPCODE 27

*OUuT 27

*PARMS 42

*PDA 240

*PLACE 177

*PROGRAM 42

*RECORD 27

*ROUTINE 27, 42

*SIZE 27

*STATUS 27, 42

*TERM 27, 42

*TOTC 27,42

*TOTL 27, 42

*ZERO/*ZEROS 384

INFDS 25

PAGE 177

PAGE, PAGE1-PAGE7 383

PAGE1-PAGE7 177

UDATE, UDAY, UMONTH, UYEAR 382
RESET operation code 198, 335
result field

length of 162

number of decimal positions 163

possible entries, in calculation specification 162
resulting indicators (01-99, H1-H9, OA-OG, OV, L1-L9,

LR, U1-U8, KA-KN, KP-KY, RT)

See also individual operation codes

calculation specifications 164

general description 58

rules for assigning 58

setting of 78
retrieval of data area

explicit 276

implicit 14
retrieval of record from full procedural file 224
retrieve a data area (IN) operation code 276
retrieving randomly (from a file based on record number

of key value) 224

466 RPG/400 Reference

RETRN (return to caller) operation code 193, 338
return (RT) indicator
as field indicator 147, 150
as record identifying indicator 140, 149
as resulting indicator 58, 164
conditioning calculations 161
conditioning output 174
general description 61
setting of 78
return point
for program exception/error subroutine 45
return status parameter 432
ROLBK (roll back) operation code 196, 339
roll back (ROLBK) operation code 339
RPG logic cycle
detail 16
general 11
RPG/400 restrictions, summary 439
RPGHSPEC data area 79
RPGOBJ 85
RT (return) indicator
See return (RT) indicator
rules
for naming objects 6
run-time array
See also array
definition of 387
rules for loading 388
with consecutive elements 390
with data structure initialization 393
with scattered elements 389

S

S/36 SORT files 95
SAVDS entry, continuation line option 113
SCAN (scan character string) operation code 200, 340
scan character string (SCAN) operation code 340
searching within a table 286
searching within an array 286
secondary file
file-description specifications 93
general description 93
SELEC (begin a select group) operation code 201,
342
SEQ file
sequence
ascending 94
collating
See alternate collating sequence
descending 94
on extension specifications 123
sequence checking
alternate collating sequence 428
on input specifications 139
with match fields 146

sequential within limits processing

description 103

file-description specifications entry 96
set bits off (BITOF) operation code 209
set bits on (BITON) operation code 210
set greater than (SETGT) operation code 344
set lower limits (SETLL) operation code 348
set off (SETOF) operation code 351
set on (SETON) operation code 352
set on and set off operation codes 197
set/get occurrence of data structure 309
SETGT (set greater than) operation code 196, 344
SETLL (set lower limits) operation code 196, 348
SETOF (set off) operation code 197, 351
SETON (set on) operation code 197, 352
SFILE

See also subfile

continuation line option 114
SHTDN (shut down) operation code 197, 353
shut down (SHTDN) operation code 353
Sign Handling 83
simple edit codes (X, Y, Z) 403
skipping

after 174

for printer output 173
SLN (Start Line Number) field 114
sort an array (SORTA) operation code 354
SORTA (sort an array) operation code 191, 354
source listing with indentation bars 246, 273
spacing

for printer output 173

not with WRITE operation 374
SPECIAL file

definition 431

device name 431

general description 431

parameter list 431
special functions

See reserved words
special words 382
specifications

common entries to all 5

order 1

types 1
split control field 56
SQL statements 157
SQRT (square root) operation code 189, 355
SR (subroutine identifier) 160, 161
starting location of key field 99
status (of an edit word) 414
status codes

in file information data structure (INFDS) 39

in program status data structure 44
status parameter for SPECIAL PLIST 431
string

indexing 340

string operations
CAT (concatenate two character strings) 200, 220
CHECK (check) 200, 227
CHEKR (check reverse) 200, 229
general information 200
SCAN (scan character string) 200, 340
SUBST (substring) 200, 357
XLATE (translate) 200, 376
structured programming operations
ANDxx (and) 201, 207
CASxx (conditionally invoke subroutine) 201, 218
DO (do) 201, 245
DOUxx (do until) 201, 248
DOWSxx (do while) 201, 251
ELSE (else do) 201, 257
ENDyy (end a group) 201, 258
general information 201
IFxx (ifthen) 201, 273
ITER (iterate) 201, 278
LEAVE (leave a structured group) 201, 284
ORxx (or) 201, 315
OTHER (otherwise select) 201, 316
SELEC (begin a select group) 201, 342
WHxx (when true then select) 201, 371
SUB (subtract) operation code 189, 356
subfields
for data structure subfield specifications 153
for program status data structure 42
in a data structure specification, initialization 153
names, rules for 8
specifications for 153
subfiles
continuation line option 114
subroutine identifier (SR) 161
subroutine names 8
subroutine operations
BEGSR (beginning of subroutine) 203, 208
CASxx (conditionally invoke subroutine) 203, 218
ENDSR (end of subroutine) 203, 259
EXSR (invoke subroutine) 203, 263
general information 203
subroutines
calculation specifications entry in positions 7 and
8 160, 161
description 203
example 264
file exception/error (INFSR) 37
maximum allowed per program 264
operation codes 203
program exception/error (*PSSR) 45
program initialization (*INZSR) 19
SUBST (substring) operation code 200, 357
substring (SUBST) operation code 357
subtract (SUB) operation code 356
subtracting factors 356
See also operation codes

Index 467

summary tables

calculation specifications 157

continuation line options 110

control specifications 79

data structure statement specifications 135

data structure subfield specifications 137

DISK file processing 105, 108

edit codes 406

extension specifications 117

externally described field description entries 134

externally described file description entries 133

file operation codes allowed with

file-description specifications 88

function key indicators and corresponding function
keys 65

indicators 77, 78

input specifications 130

line counter specifications 125

named constant continuation specifications 138

named constant specifications 138, 142

operation codes 185

output specifications 165

program description field description entries 132

table (continued)

from file name 119

loading 400

maximum number of 117

name on extension specifications 121

name, rules for 8

number of entries 122

searching

See LOKUP operation

specifying a table element 401

to file name 120
TAG operation code 192, 195, 360
test numeric (TESTN) operation code 363
test operations

general information 204

TESTB (test bit) operation code 204, 361

TESTN (test numeric) operation code 204, 363

TESTZ (test zone) operation code 204, 365
test zone (TESTZ) operation code 365
TESTB (test bit) operation code 192, 204, 361
testing fields

See field indicators
testing RPG programs

program description record identification codes 131
program description record identification entries 130
RPG/400 restrictions 439

summing array elements 375

symbolic hame

TESTN (test numeric) operation code 204, 363
TESTZ (test zone) operation code 204, 365
three disk files

See match fields
TIME (time of day) operation code 197, 366

array names 6
data structure names 7
EXCPT names 7
field names 7

file names 7
KLIST names 7
labels 7

PLIST names 7
record names 7
subfield names 8
subroutine names 8
table names 8

symbolic names 6

table

See also array
alternating
definition 394
specification of 123
defining 400
definition 387
differences from array 387
element, specifying 401
example of using 401
file 93
format of 122

468 RPG/400 Reference

time of day (TIME) operation code 366
time out 324
to file name (extension specifications) 120
total (T) output records 171
TOTC
file exception/error subroutine (INFSR) 27
file information data structure (INFDS) 27
flowchart 15
program exception/errors 38
TOTL
file exception/error subroutine (INFSR) 38
file information data structure (INFDS) 27
flowchart 15
program exception/errors 42
translate (XLATE) operation code 376
translation table and alternate collating sequence coding
sheet 427
translation, file
See file translation
transparency check
on control specification 84
transparent literals and constants
definition 435
examples 435
rule for continuation 155
triple asterisk (***)
type of record, output specification 171

U

Ul-us
See external (U1-U8) indicators
uc 101
UDATE 382
UDAY 382
UMONTH 382
UNLCK (unlock a data area or record)) operation
code 368
UNLCK (unlock a data area) operation code 194, 196
unlock a data area or record (UNLCK) operation
code 368
unwanted control breaks 51, 53
UPDAT (modify existing record) operation code 196,
369
specifications for 369
update file 92
updating data area 317
updating records/files
See file blocking by RPG
usage of indicators
See indicators
user control of file opening 101
user date special words
format 82, 382
rules 382
user-defined edit codes (5-9) 406
using arrays 387
See also array
using tables 387
See also array
UYEAR 382

Vv

valid character set 1
variable line number 114

W
WAITRCD 324
WHxx (when true then select) operation code 193,
201, 371
WORKSTN file
device name 99
subfiles
WRITE (create new records) operation code 196, 374
write/then read format (EXFMT) operation code 262
writing a new record to a file 374
writing records during calculation time 260

X

XFOOT (summing the elements of an array) operation
code 189, 191, 375

XLATE (translate) operation code 200, 376

Y

Y edit code
control specification entries (positions 19 through
21) 82

Z

Z-ADD (zero and add) operation code 189, 378
Z-SUB (zero and subtract) operation code 189, 379
zero (blanking) fields 178
zero suppression 404

in body of edit word 413

with combination edit code 404
zone entry

See C/Z/D (character/zone/digit)
zone operation codes

See move zone operation codes

Index 469

